검색결과
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다 - 새로운 퀀텀닷 패터닝 기술 개발로 고해상도, 대규모 양자점 화소 제작 가능 - 능동형 퀀텀닷 발광다이오드(AMQDLED), 태양전지 등 광범위한 분야에 활용 기대 *퀀텀닷 : 양자점, 자체적으로 빛을 내는 나노미터(nm)의 초미세 반도체 결정 고성능 디스플레이 경쟁이 뜨거운 가운데, 퀀텀닷(양자점(Quantum Dot), QD)은 다양하고 순도 높은 빛을 발광하며 세밀한 색상 표현이 가능하여, 높은 색 재현율과 뛰어난 광변환 효율로 차세대 디스플레이 소재로 주목받고 있다. 최근 국내 연구진이 새로운 양자점 패터닝 기술로 대규모 고해상도 퀀텀닷 장치 제작에 실용적이고 비용이 적게 드는 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터의 한일기 박사, 박준서 연구원팀은 기존 반도체 공정법을 활용한 대면적 미세 퀀텀닷(QD) 패턴 형성 기술을 개발했다. 연구진은 기존 반도체 미세 패턴 형성기술인 노광(포토리소그래피) 공정* 을 활용하여 다색 퀀텀닷 미세 패턴 형성 기술을 최초로 개발하였고, 더 나아가 이 기술을 활용하여 패턴된 전기구동 퀀텀닷 발광 소자를 구현하는데 까지 성공, 이 기술이 향후 디스플레이나 전자 소자에 활용 될 수 있는 가능성을 보였다. *노광(포토리소그래피) 공정 : 사진을 찍듯이 빛을 이용하여 미세패턴을 형성하는 기술 이미 디스플레이 업계에서는 퀀텀닷 기반 백색 광원을 제작, 액정 표시 장치(LCD)의 백라이트로 탑재시켜 퀀텀닷 디스플레이라는 이름의 제품으로 출시한 바가 있으나 퀀텀닷 자체가 각 색상을 발광하는 진정한 의미의 퀀텀닷 디스플레이는 구현하지 못하고 있다. LCD 디스플레이 기술은 액정 표시 장치의 자체 두께로 인하여 얇게 만드는데 한계가 있고 또한 유연하거나 투명한 디스플레이 등에 응용하기 어렵다는 문제가 있다. 때문에 기존 스마트폰 등에 탑재된 능동형 유기 발광 다이오드(AMOLED)처럼 각 퀀텀닷 화소가 직접 색을 내는 디스플레이 기술에 대한 수요가 있었으나 여러 가지 난관이 있었다. 퀀텀닷을 능동형 발광 디스플레이에 활용하기 위해서는 우선 여러 종류의 액상으로 분산되어 있던 퀀텀닷을 원하는 위치에 색상별로 고정시켜야하는 기술이 필요하며, 다양한 색상의 패턴을 고해상도로 대면적으로 형성하는데 있어 기술 접근성의 어려움, 공정비용의 상승의 문제 등 여러 기술적, 경제적 제한이 있었다. 연구진은 이번 개발된 기술이 대면적 전자소자 공정에도 활용되는 기술임에 따라 공정 난이도가 낮고, 공정당 퀀텀닷 소모량이 적다는 점에서 공정비용을 줄일 수 있다고 밝혔다. 향후 다양한 퀀텀닷 기반 소자 개발에 필요한 패턴기술의 대안이 될 수 있을 것이라 기대하고 있다. 이번 연구를 통해 한일기 박사, 박준서 연구원팀은 “기존 반도체 공정 기술을 다색 퀀텀닷 패턴 형성에 응용할 수 있다는 점에서 차별점이 있으며, 활용성이 높아 퀀텀닷 기반 소자 개발에 도움이 될 것으로 기대된다. 향후 AMOLED에 들어가는 유기물을 퀀텀닷으로 대체한 고해상도 디스플레이(AMQDLED)나 다파장 퀀텀닷 기반 광센서 등의 분야로 확장될 수 있는 기술이다.”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희, 전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 지원을 통해 수행되었다. 연구결과는 나노 분야 국제학술지인 ‘Nano Letters’(IF:13.779)에 11월 9일자 최신호에 게재되었고, 국제 유명 과학 뉴스 웹사이트 phys.org에 특집 기사(Featured article)로 소개되기도 했다. *phys.org 특집 기사(Featured article) 링크 http://phys.org/news/2016-11-scientists-bottleneck-fabricating-quantum-dot.html * (논문명) ‘Alternative Patterning Process for Realization of Large-area, Full-color, Active Quantum Dot Display ’ - (제 1저자) 한국과학기술연구원 박준서 연구원, 동국대학교 김지훈 교수, 한국과학기술연구원 김홍희 학생연구원 - (교신저자) 한국과학기술연구원 한일기 박사, 박준서 연구원 <그림자료> <그림 1> 다색 퀀텀닷 패턴형성 기술 예시 및 본 기술을 활용한 패턴된 퀀텀닷 발광소자 구현 결과 (좌상)고해상도로 (중상),(우상)노광공정(포토리소그래피)을 반복하며 여러 종류의 퀀텀닷 패턴을 동일 기판 표면에 형성할 수 있으며, (좌하)위치별로 두께를 조절 할 수 있고, 국부적인 미세패턴 형성뿐만 아니라 (중하)대면적(4인치 기판)에도 동일한 방법으로 패턴 형성이 가능함을 보임. (우하) 더 나아가 패턴 된 전기구동 퀀텀닷 발광소자 제작이 가능함을 보임.
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다 - 새로운 퀀텀닷 패터닝 기술 개발로 고해상도, 대규모 양자점 화소 제작 가능 - 능동형 퀀텀닷 발광다이오드(AMQDLED), 태양전지 등 광범위한 분야에 활용 기대 *퀀텀닷 : 양자점, 자체적으로 빛을 내는 나노미터(nm)의 초미세 반도체 결정 고성능 디스플레이 경쟁이 뜨거운 가운데, 퀀텀닷(양자점(Quantum Dot), QD)은 다양하고 순도 높은 빛을 발광하며 세밀한 색상 표현이 가능하여, 높은 색 재현율과 뛰어난 광변환 효율로 차세대 디스플레이 소재로 주목받고 있다. 최근 국내 연구진이 새로운 양자점 패터닝 기술로 대규모 고해상도 퀀텀닷 장치 제작에 실용적이고 비용이 적게 드는 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터의 한일기 박사, 박준서 연구원팀은 기존 반도체 공정법을 활용한 대면적 미세 퀀텀닷(QD) 패턴 형성 기술을 개발했다. 연구진은 기존 반도체 미세 패턴 형성기술인 노광(포토리소그래피) 공정* 을 활용하여 다색 퀀텀닷 미세 패턴 형성 기술을 최초로 개발하였고, 더 나아가 이 기술을 활용하여 패턴된 전기구동 퀀텀닷 발광 소자를 구현하는데 까지 성공, 이 기술이 향후 디스플레이나 전자 소자에 활용 될 수 있는 가능성을 보였다. *노광(포토리소그래피) 공정 : 사진을 찍듯이 빛을 이용하여 미세패턴을 형성하는 기술 이미 디스플레이 업계에서는 퀀텀닷 기반 백색 광원을 제작, 액정 표시 장치(LCD)의 백라이트로 탑재시켜 퀀텀닷 디스플레이라는 이름의 제품으로 출시한 바가 있으나 퀀텀닷 자체가 각 색상을 발광하는 진정한 의미의 퀀텀닷 디스플레이는 구현하지 못하고 있다. LCD 디스플레이 기술은 액정 표시 장치의 자체 두께로 인하여 얇게 만드는데 한계가 있고 또한 유연하거나 투명한 디스플레이 등에 응용하기 어렵다는 문제가 있다. 때문에 기존 스마트폰 등에 탑재된 능동형 유기 발광 다이오드(AMOLED)처럼 각 퀀텀닷 화소가 직접 색을 내는 디스플레이 기술에 대한 수요가 있었으나 여러 가지 난관이 있었다. 퀀텀닷을 능동형 발광 디스플레이에 활용하기 위해서는 우선 여러 종류의 액상으로 분산되어 있던 퀀텀닷을 원하는 위치에 색상별로 고정시켜야하는 기술이 필요하며, 다양한 색상의 패턴을 고해상도로 대면적으로 형성하는데 있어 기술 접근성의 어려움, 공정비용의 상승의 문제 등 여러 기술적, 경제적 제한이 있었다. 연구진은 이번 개발된 기술이 대면적 전자소자 공정에도 활용되는 기술임에 따라 공정 난이도가 낮고, 공정당 퀀텀닷 소모량이 적다는 점에서 공정비용을 줄일 수 있다고 밝혔다. 향후 다양한 퀀텀닷 기반 소자 개발에 필요한 패턴기술의 대안이 될 수 있을 것이라 기대하고 있다. 이번 연구를 통해 한일기 박사, 박준서 연구원팀은 “기존 반도체 공정 기술을 다색 퀀텀닷 패턴 형성에 응용할 수 있다는 점에서 차별점이 있으며, 활용성이 높아 퀀텀닷 기반 소자 개발에 도움이 될 것으로 기대된다. 향후 AMOLED에 들어가는 유기물을 퀀텀닷으로 대체한 고해상도 디스플레이(AMQDLED)나 다파장 퀀텀닷 기반 광센서 등의 분야로 확장될 수 있는 기술이다.”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희, 전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 지원을 통해 수행되었다. 연구결과는 나노 분야 국제학술지인 ‘Nano Letters’(IF:13.779)에 11월 9일자 최신호에 게재되었고, 국제 유명 과학 뉴스 웹사이트 phys.org에 특집 기사(Featured article)로 소개되기도 했다. *phys.org 특집 기사(Featured article) 링크 http://phys.org/news/2016-11-scientists-bottleneck-fabricating-quantum-dot.html * (논문명) ‘Alternative Patterning Process for Realization of Large-area, Full-color, Active Quantum Dot Display ’ - (제 1저자) 한국과학기술연구원 박준서 연구원, 동국대학교 김지훈 교수, 한국과학기술연구원 김홍희 학생연구원 - (교신저자) 한국과학기술연구원 한일기 박사, 박준서 연구원 <그림자료> <그림 1> 다색 퀀텀닷 패턴형성 기술 예시 및 본 기술을 활용한 패턴된 퀀텀닷 발광소자 구현 결과 (좌상)고해상도로 (중상),(우상)노광공정(포토리소그래피)을 반복하며 여러 종류의 퀀텀닷 패턴을 동일 기판 표면에 형성할 수 있으며, (좌하)위치별로 두께를 조절 할 수 있고, 국부적인 미세패턴 형성뿐만 아니라 (중하)대면적(4인치 기판)에도 동일한 방법으로 패턴 형성이 가능함을 보임. (우하) 더 나아가 패턴 된 전기구동 퀀텀닷 발광소자 제작이 가능함을 보임.
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다 - 새로운 퀀텀닷 패터닝 기술 개발로 고해상도, 대규모 양자점 화소 제작 가능 - 능동형 퀀텀닷 발광다이오드(AMQDLED), 태양전지 등 광범위한 분야에 활용 기대 *퀀텀닷 : 양자점, 자체적으로 빛을 내는 나노미터(nm)의 초미세 반도체 결정 고성능 디스플레이 경쟁이 뜨거운 가운데, 퀀텀닷(양자점(Quantum Dot), QD)은 다양하고 순도 높은 빛을 발광하며 세밀한 색상 표현이 가능하여, 높은 색 재현율과 뛰어난 광변환 효율로 차세대 디스플레이 소재로 주목받고 있다. 최근 국내 연구진이 새로운 양자점 패터닝 기술로 대규모 고해상도 퀀텀닷 장치 제작에 실용적이고 비용이 적게 드는 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터의 한일기 박사, 박준서 연구원팀은 기존 반도체 공정법을 활용한 대면적 미세 퀀텀닷(QD) 패턴 형성 기술을 개발했다. 연구진은 기존 반도체 미세 패턴 형성기술인 노광(포토리소그래피) 공정* 을 활용하여 다색 퀀텀닷 미세 패턴 형성 기술을 최초로 개발하였고, 더 나아가 이 기술을 활용하여 패턴된 전기구동 퀀텀닷 발광 소자를 구현하는데 까지 성공, 이 기술이 향후 디스플레이나 전자 소자에 활용 될 수 있는 가능성을 보였다. *노광(포토리소그래피) 공정 : 사진을 찍듯이 빛을 이용하여 미세패턴을 형성하는 기술 이미 디스플레이 업계에서는 퀀텀닷 기반 백색 광원을 제작, 액정 표시 장치(LCD)의 백라이트로 탑재시켜 퀀텀닷 디스플레이라는 이름의 제품으로 출시한 바가 있으나 퀀텀닷 자체가 각 색상을 발광하는 진정한 의미의 퀀텀닷 디스플레이는 구현하지 못하고 있다. LCD 디스플레이 기술은 액정 표시 장치의 자체 두께로 인하여 얇게 만드는데 한계가 있고 또한 유연하거나 투명한 디스플레이 등에 응용하기 어렵다는 문제가 있다. 때문에 기존 스마트폰 등에 탑재된 능동형 유기 발광 다이오드(AMOLED)처럼 각 퀀텀닷 화소가 직접 색을 내는 디스플레이 기술에 대한 수요가 있었으나 여러 가지 난관이 있었다. 퀀텀닷을 능동형 발광 디스플레이에 활용하기 위해서는 우선 여러 종류의 액상으로 분산되어 있던 퀀텀닷을 원하는 위치에 색상별로 고정시켜야하는 기술이 필요하며, 다양한 색상의 패턴을 고해상도로 대면적으로 형성하는데 있어 기술 접근성의 어려움, 공정비용의 상승의 문제 등 여러 기술적, 경제적 제한이 있었다. 연구진은 이번 개발된 기술이 대면적 전자소자 공정에도 활용되는 기술임에 따라 공정 난이도가 낮고, 공정당 퀀텀닷 소모량이 적다는 점에서 공정비용을 줄일 수 있다고 밝혔다. 향후 다양한 퀀텀닷 기반 소자 개발에 필요한 패턴기술의 대안이 될 수 있을 것이라 기대하고 있다. 이번 연구를 통해 한일기 박사, 박준서 연구원팀은 “기존 반도체 공정 기술을 다색 퀀텀닷 패턴 형성에 응용할 수 있다는 점에서 차별점이 있으며, 활용성이 높아 퀀텀닷 기반 소자 개발에 도움이 될 것으로 기대된다. 향후 AMOLED에 들어가는 유기물을 퀀텀닷으로 대체한 고해상도 디스플레이(AMQDLED)나 다파장 퀀텀닷 기반 광센서 등의 분야로 확장될 수 있는 기술이다.”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희, 전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 지원을 통해 수행되었다. 연구결과는 나노 분야 국제학술지인 ‘Nano Letters’(IF:13.779)에 11월 9일자 최신호에 게재되었고, 국제 유명 과학 뉴스 웹사이트 phys.org에 특집 기사(Featured article)로 소개되기도 했다. *phys.org 특집 기사(Featured article) 링크 http://phys.org/news/2016-11-scientists-bottleneck-fabricating-quantum-dot.html * (논문명) ‘Alternative Patterning Process for Realization of Large-area, Full-color, Active Quantum Dot Display ’ - (제 1저자) 한국과학기술연구원 박준서 연구원, 동국대학교 김지훈 교수, 한국과학기술연구원 김홍희 학생연구원 - (교신저자) 한국과학기술연구원 한일기 박사, 박준서 연구원 <그림자료> <그림 1> 다색 퀀텀닷 패턴형성 기술 예시 및 본 기술을 활용한 패턴된 퀀텀닷 발광소자 구현 결과 (좌상)고해상도로 (중상),(우상)노광공정(포토리소그래피)을 반복하며 여러 종류의 퀀텀닷 패턴을 동일 기판 표면에 형성할 수 있으며, (좌하)위치별로 두께를 조절 할 수 있고, 국부적인 미세패턴 형성뿐만 아니라 (중하)대면적(4인치 기판)에도 동일한 방법으로 패턴 형성이 가능함을 보임. (우하) 더 나아가 패턴 된 전기구동 퀀텀닷 발광소자 제작이 가능함을 보임.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다
페로브스카이트 단점 없앤 대면적, 유연한(Flexible) 태양전지 만든다 - 용액분산 그래핀*을 통한 페로브스카이트 결정도 제어 및 소자 성능/안정성 향상 - 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현 *용액분산 그래핀 : 용액공정을 통한 대량생산과 다양한 성능 조절 및 개선이 용이한 그래핀 유·무기 복합 페로브스카이트는 금속, 유기물, 할로겐족(불소, 염소, 브롬 등)이 결합되어 화합물결정구조를 형성한 물질로서 높은 광흡수성과 우수한 전하 이동능력을 기반으로 태양전지의 높은 광전변환효율*을 구현할 수 있는 차세대 소재로 급격하게 부상하고 있다. 또한, 실리콘 등의 기존 무기태양전지에 비해 물질 원가가 매우 저렴하고 용액공정이 가능하다는 장점이 있어, 페로브스카이트 태양전지는 단기간 안에 상업화가 가능할 것으로 전망되고 있다. *광전변환효율 : 광 에너지를 전기 에너지로 변환되는 효율 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사, 광주과학기술원 신소재공학부 김동유 교수 공동연구팀은 저가소재인 용액분산 그래핀을 이용하여, 고효율의 대면적 유연 페로브스카이트 태양전지를 제작하는데 성공했다. 지금까지 페로브스카이트 태양전지는 많은 가능성을 보였으나, 성능 향상을 위해 계면층으로 삽입되고 있는 전도성 고분자(PEDOT:PSS)의 높은 산성과 흡습성이 페로브스카이트 태양전지의 수명을 단축시키는 단점과 고효율 소자 제작과 기초 구동원리 연구에만 집중되어 있고, 대면적-대량생산 등 상용화를 위한 연구는 초기 단계에 머무르고 있었다. 본 연구팀은 새로운 계면층으로 전기적 전도성, 기계적 유연성, 화학적 안정성을 겸비한 용액분산 그래핀을 도입하여, 기존 전도성 고분자(PEDOT:PSS) 기반 소자 대비 약 40% 가량 높은 광전변환효율과 약 3배 높은 소자 수명을 구현하였다. 또한, 기존 전도성 고분자(PEDOT:PSS) 대비, 용액분산 그래핀을 기반한 페로브스카이트 박막은 결정의 방향성 및 결정도가 획기적으로 향상된다는 것을 발견하였다. 이는 그래핀 자체의 우수한 특성 외에, 그래핀과 페로브스카이트의 상호작용이 페로브스카이트 결정 특성 및 전반적인 소자 성능/안정성에 영향을 미친다는 것을 밝혀낸 것이다. 연구팀은 더 나아가, 용액분산 그래핀을 활용하여 페로브스카이트 태양전지 소자 제작에 필요한 모든 세부 조건들을 간단한 용액 공정에 그대로 적용해, 기존 연구용 소자(0.05cm2)보다 200배 큰 10cm2의 대면적 유연(Flexible) 페로브스카이트 태양전지 모듈을 구현하였다. KIST 탄소융합소재연구센터 조한익 박사는 “용액분산 그래핀의 대면적 소자 응용의 첫 성공사례”라며, “이를 통한 저비용/고효율의 대면적 유연 페로브스카이트 태양전지 구현은 페로브스카이트 태양전지의 상용화를 앞당기는 중요한 초석이 될 것으로 생각한다”고 밝혔다. 본 연구는 미래창조과학부(장관, 최양희)지원으로 KIST 기관고유사업으로 수행되었으며, 연구 결과는 Elsevier에서 발간하는 나노에너지(Nano Energy, IF: 11.553)에 11월 1일자 온라인 게재되었다. 논문의 제1저자는 박사후 연구원인 여준석 박사이며, 광주과학기술원(김동유 교수)과의 공동연구 결과이다. * (논문명) ‘Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales’ - (제1저자) 여준석 박사후 연구원 - (공동교신저자) 한국과학기술연구원 전북분원 조한익 박사 광주과학기술원 신소재공학부 김동유 교수 <그림자료> <그림 1> (a) 광전류밀도-전압 곡선으로, PEDOT:PSS 기반 소자 대비 용액분산 그래핀(MFGO) 기반 소자의 광전변환효율이 우수한 것을 보여주는 결과이다. 모든 태양전지 성능 평가 요소(개방전압, 단략전류밀도, 충진율)들이 균일하게 상승한 것을 알 수 있다. (b) 페로브스카이트 태양전지를 공기 중에 보관하였을 때, 시간(날)에 따른 광전변환효율의 변화를 나타내는 그래프이다. PEDOT:PSS 소자의 경우 10일이 채 되지 않아 광전변환특성이 사라지는 것이 발견되었고, 용액분산 그래핀 소자의 경우 약 30일까지도 광전변환효율이 약 7%로 유지되는 것을 보여주고 있다. <그림 2>해당 그림은 PEDOT:PSS와 용액분산 그래핀(MFGO) 위에서 페로브스카이트 전구체의 결정화 거동에 대한 모식도이다. 작은 이온들 간 이온결합으로 이뤄진 페로브스카이트 결정박막은 PEDOT:PSS와 같은 특정 전하를 띄는 표면보다 용액분산 그래핀과 같은 화학적으로 안정한 표면에서 우수한 결정성을 갖는다는 것을 밝혀냈다. <그림3> (a) 대면적 페로브스카이트 태양전지 모듈 구조 모식도와 실제 사진 이미지를 보여주고 있다. (b) 플라스틱 기판 위에 구현하여, 태양전지 모듈의 우수한 기계적 유연성을 확인 할 수 있다.