검색결과
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발
다양한 고감도 가스 감지가 가능한 이차원 반도체 제조기술 개발 - 수소-불소 플라즈마 도핑 기술을 이용하여 광발광 효율을 가역적으로 조절 - 기존에 검지되지 않던 암모니아 가스를 고감도 감지 최근 국내 연구진이 광발광 효율을 대폭 향상시킬 수 있고 다양한 가스의 감지가 가능한 이차원(2D) 전이금속 칼코겐 화합물 반도체 제조 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 전영민 박사팀은 수소-불소 플라즈마 기술을 이용하여 이차원 전이금속 칼코겐화합물의 광발광 효율을 크게 향상시킬 수 있을 뿐만 아니라 이를 가역적*으로 조절할 수 있는 기술을 개발했다. *가역적 : 역과정이 순과정과 완전히 동일하게 일어나는 과정 전이금속 칼코겐 화합물은 약하게 결합된 층상구조를 가지고 있어 그래핀과 유사하게 단일층으로 쉽게 분리될 수 있다. 이렇게 만들어진 이차원 전이금속 칼코겐화합물은 그래핀과 달리 반도체 특성을 가지고 있어 차세대 이차원 물질로 많은 연구가 이루어지고 있으나 낮은 광발광 효율로 인해 전자 및 광학 소자 개발에 어려움을 겪어왔다. 또한 이차원 전이금속 칼코겐화합물 반도체에서 광발광 효율은 엑시톤*의 발광과 관련이 있어 이를 가역적으로 조절할 수 있는 기술이 중요하나 지금까지는 이를 위하여 복잡한 구조의 전자 소자의 제작이 요구되어 왔다. *엑시톤(Exciton) : 전자(電子)와 양공(陽孔)이 정전기력으로 결합하여 형성된 준입자 전영민 박사팀이 개발한 플라즈마 도핑 기술은 적은 양의 처리로도 이차원 전이금속 칼코겐화합물 반도체의 광발광 효율을 대폭 향상시킬 수 있을 뿐 아니라 복잡한 공정 없이도 쉽게 광발광 효율을 가역적으로 조절할 수 있다. 이는 상기 물질에서 광발광 효율이 전자 농도에 의존하여 변화하고 불소 원소가 높은 전기음성도*와 흡착 에너지를 가지고 있음에도 개발된 플라즈마 기술로 인하여 탈착 현상이 안정적으로 정밀하게 일어날 수 있기 때문이다. *전기음성도 : 분자나 원자가 외부의 전자를 끌어 잡아당기는 힘의 정도 또한 연구팀은 새롭게 개발된 기술을 이용하면 이차원 물질의 전자 상태를 크게 바꿀 수 있기에 기존 이차원 텅스텐 칼코겐화물 반도체에서는 감지가 안 되었던 암모니아 가스를 고감도로 감지할 수 있다는 사실도 증명하였다. 이러한 센서의 응용은 기존에 감지가 되지 않았던 다른 n-형 가스*에도 적용할 수 있다. *n-형 가스 : 전자를 주는 성질을 지닌 가스 KIST 전영민 박사는 “본 연구에서 개발된 기술은 차세대 스핀-편광 광발광 다이오드, 고감도 가스 센서 등의 새로운 광전 소자 개발에 중요한 기여를 할 것으로 생각하며 향후 전이금속 칼코겐화합물 외의 다른 이차원 물질들에도 다양한 형태의 적용이 가능하다”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 미래원천기술개발사업과 글로벌 프론티어사업으로 수행되었으며, 연구 결과는 재료과학 분야의 세계적 권위 학술지인 ‘Advanced Functional Materials’ 11월 8일자(Vol.26, No.42) 전면 표지논문(Front Cover)으로 선정되어 게재되었다. <그림설명> <그림 1> 수소-불소 플라즈마 공정에 따른 텅스텐 칼코겐화물 반도체에서의 트리온-엑시톤 광발광 효율의 변화 불소 플라즈마 공정에 따라 이차원 텅스텐 칼코겐화물 반도체의 엑시톤 광발광 세기가 크게 변한다(왼쪽 및 중앙 그림들). 수소-불소 플라즈마 기술을 적용하면 이차원 텅스텐 칼코겐화물 반도체의 광발광 효율의 반복적인 가역 조절이 가능하다. <그림 2> 불소화된 이차원 텅스텐 칼코겐화물 반도체의 암모니아 가스 검지 성능 기존의 텅스텐 칼코겐화물 반도체는 암모니아 가스를 전혀 검지할 수 없는 반면에 불소 플라즈마 공정에 따른 전자농도 및 광발광 효율의 변화에 의하여 불소화된 이차원 텅스텐 칼코겐화물 반도체는 높은 감도로 암모니아 가스를 검지할 수 있다.
KIST, 국제기구 장학생 유치 물꼬 텄다
KIST, 국제기구 장학생 유치 물꼬 텄다 - 국제기구 지원으로 개도국 학생 한국 과학기술 수학 길 열려 한국과학기술연구원(KIST, 원장 이병권)은 국제기구의 지원을 받아 개발도상국 학생을 대상으로 하는 교육과정을 개설한다고 밝혔다. KIST는 11월 27일(일) 르완다에서 세네갈, 에티오피아, 르완다 국가 정부, 기업, 연구소, 교육기관이 연합하여 출범된 ‘World Bank(WB) 파트너십 프로그램’(PASET*)과의 공동연구 및 인력교류를 위한 협력협정을 체결했다. *(Partnership for Skills in Applied Sciences, Engineering and Technology) 이 협약에 따라, 아프리카 사하라 사막 이남지역(SSA 지역 : Sub-Saharan Africa) 우수대학의 에너지, ICT 분야 박사과정 학생들은 오는 2017부터 KIST 연구과제에 참여하면서 한국의 발전경험과 선진과학기술 학습하고, 이에 따른 학점을 부여 받을 예정이다. KIST는 이번 장학프로그램 개설을 통해 아프리카 지역의 과학기술 발전과 한-아프리카 상생 발전에 기여하게 될 것이라고 밝혔다. KIST는 SSA 지역에서 매년 10명의 학생을 선발하여 ‘World Bank 파트너쉽 프로그램’(PASET)의 장학금 지원으로 박사과정 수행을 지원한다. 앞으로도 SSA 지역의 정부와 World Bank(WB)는 해당 지역사회 경제 발전을 위해 응용과학·공학·기술 분야의 파트너십을 강화해 나가고, 국비 유학생의 규모 역시 확대될 것으로 보인다. 이병권 KIST 원장은 “이번 MoU를 통해 한국의 첨단기술이 SSA 지역의 미래 과학기술 발전에 크게 기여하고, 양국의 인력교류에도 성공적인 모델이 되리라 전망한다”고 밝혔다. 아울러 KIST와 PASET은 이번 협약 체결을 계기로 향후 연구인력 교류 과학기술 커리큘럼 개발을 활성화하고 나아가 양 기관 연구협력 추진을 위해 상호 노력하기로 합의했다. 한편, KIST는 지난 10월에도 미주개발은행(IDB)의 재원으로 운영되는 우루과이 국립연구혁신청과 MoU를 체결하고, 우루과이 이공계 박사과정 학생들을 연간 2명 선발하기로 한 바 있다.
구종민 박사, 이달의 KIST인상 수상
구종민 박사, 이달의 KIST인상 수상 - 우수한 전자파 차폐 성능 입증한 2D나노소재(MXene, 맥신) 응용기술 개발 - Science紙 논문 게재로 탁월한 연구업적 인정받아 이달의 KIST인상 수상 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 구종민 박사가 11월 24일(목) KIST 서울 본원에서 우수한 연구업적을 인정받아 ‘이달의 KIST인상‘을 수상했다. KIST 구종민 박사는 美 Drexel 대학교 Yury Gogotsi 교수팀과 공동연구로‘MXene(한글명:맥신)’이라 불리는 2D 新나노재료, 전이금속 카바이드를 이용한 전기전도성이 우수하면서도 가볍고 저가이며, 가공성 또한 우수한 전자파 차폐기술을 개발하고 그 연구결과를 Science紙(IF:34.661)에 공동 교신저자로 게재하였다. 구종민 박사는 ‘MXene’의 우수한 전기전도도와 2D 나노구조 특성으로 인한 강한 내부다중 반사효과의 매커니즘을 규명한 공적으로 탁월한 연구업적을 인정받아 ‘이달의 KIST인상’을 수상했다. 이달의 KIST인상은 원의 발전에 가장 창조적, 혁신적으로 기여한 우수 직원을 발굴하여 포상함으로써 연구(업무)활동의 활성화하고자, 해당부서장이 적격후보자를 추천하여 포상심의위원회(포상제도시행지침 제7조)심의를 거쳐 최종 선정된다. ○ 문의 - KIST 인사경영팀 이태호 팀장(TEL. 02-958-6034, C.P : 010-8887-4671, leeth@kist.re.kr)
KIST, 세브란스 병원과 MOU 체결
KIST, 세브란스 병원과 MOU 체결 - 상호 발전 및 기초·임상·교육 분야와 관련된 연구협력 활성화 한국과학기술연구원(KIST, 원장 이병권)은 세브란스 병원과 12월 2일(금) 11시 신촌 세브란스병원에서 기초·임상·교육 분야와 관련된 연구협력 활성화를 위한 업무협약(MOU)을 체결하였다. 본 협약은 의료의 新시대에 최고 전문 기관들의 상호협력을 통한 연구 성과를 창출하고, 기초·임상·교육 분야와 관련된 연구협력 활성화를 통해 상호발전을 도모하기 위한 목적으로 체결되었다. 양 기관은 빅데이터 이용 및 메디컬 인포매틱스 분야 공동 연구를 통해 질병 원인 분석과 질병 전파 모형의 개발, 의학 이미지 분석 등을 협력하고, 바이오 및 임상 의공학 분야의 공동연구로 줄기세포 해석 및 신약개발, 뇌파 기반의 후각 신경계 연구 등을 진행해 나갈 계획이다. KIST 이병권 원장은 “이번 업무협약으로 세브란스병원과 빅 데이터 이용 및 메디컬 인포매틱스 공동연구를 통해 최첨단 의학 진단을 선도하고, 바이오 및 임상 의공학 분야 연구협력을 통해 국민의 건강증진에 기여할 것으로 전망된다”고 밝혔다.