보도자료
-
5
친환경 수소연료전지 상용화 가까워졌다
친환경 수소연료전지 상용화 가까워졌다 - KIST, 내구성 높은 고성능, 저가형 연료전지 촉매 개발 성공 - 자동차, 가정용 발전기, 휴대용 전자기기 등 다양한 분야에 적용 가능 국내 연구진이 수소연료전지 생산에 들어가는 백금의 양을 획기적으로 줄일 수 있는 원천기술을 개발해 높은 가격으로 인해 대량 생산이 어려웠던 수소연료전지의 상용화에 청신호가 켜졌다. 한국과학기술연구원(KIST, 원장 문길주) 국가기반기술연구본부 연료전지연구센터 황승준 연구원, 유성종 박사, 김수길 박사는 미래융합기술연구본부 전자재료연구센터 이승철 박사팀과의 공동연구를 통해 원자수준의 백금 코팅 기술을 사용하여 연료전지에서 백금의 양을 획기적으로 줄이면서도 높은 성능과 내구성을 구현해내는데 성공했다고 밝혔다. 이번 연구를 활용하여 수소 연료전지 자동차에 들어가는 백금을 백금코팅 촉매로 바꾸면 기존에 약 70g이 소요되었던 백금의 양을 20g 수준으로 절감할 수 있을 것으로 예상된다. 이번 연구성과는 국내 독자적 원천기술 확보 뿐만 아니라 연료전지 대중화의 토대가 되는 획기적인 성과로 본 연구성과는 지난 2월 19일, 세계적인 권위를 자랑하는 Nature의 온라인 자매지인 「Scientific Reports」 에 게재되었다. 최근 현대자동차가 세계 최초로 수소 연료전지 자동차의 양산 계획을 발표하면서 수소를 사용하는 차세대 연료전지 기술이 주목받고 있다. 친환경 자동차인 수소 연료전지 자동차는 수소와 산소를 이용, 전기를 생산해 연료전지를 내연기관 엔진대신 사용하여 유해가스 배출과 소음을 획기적으로 줄일 수 있다. 하지만 대당 2억 원이 넘는 가격이 대중화의 걸림돌이었다. 연료전지 가격이 수소 연료전지 자동차 값의 절반을 넘게 차지하는 탓이다. 현재 기술 수준으로 중형급 수소 연료전지 자동차 한대에 들어가는 백금은 70g가량인데, 백금 시세를 감안하면 연료전지 내 촉매의 가격만 1000만원에 달하는 셈이다. 게다가 백금이 장시간 운전 중에 용해되어 연료전지 성능을 저하시키는 현상 또한 큰 과제로 남겨져있었다. 지금까지 백금의 고비용 문제를 해결하기 위한 연구는 주로 백금 자체의 활성을 증가시키거나, 백금과 전이금속 합금 형태의 전극촉매를 개발하는 것이었다. 최근에는 높은 전기화학적 활성 및 안정성으로 인해 원자수준의 백금 코팅 기술인 ‘코어-쉘’ 구조의 전극촉매에 대한 관심이 높아지고 있다. 현재는 균일한 코팅 층을 형성하기 위해서 원자수준의 백금을 코팅할 때 안정제나 분산제 등을 사용하고 있다. 하지만 이러한 안정제나 분산제는 촉매의 반응성에 악영향을 주며, 핵심 입자의 표면에 백금 코팅 층을 형성할 때 방해가 되기 때문에 화학적 처리나 열처리를 통한 제거가 필요하다. 이러한 화학적 처리나 열처리 과정에서 핵심 입자가 응집되거나 형태가 망가질 수 있고, 백금 코팅 층의 경우에도 입자의 응집이 일어나거나 코팅 층의 붕괴가 발생할 수 있어 전극촉매의 활성이 떨어지는 문제가 발생한다. 이번에 연구팀이 개발한 기술을 사용하면, 원자수준의 백금을 코팅하는 과정에서 코팅 층이 형성된 후 안정제의 제거를 위해 행해지던 열처리 또는 화학적 처리공정이 필요 없게 된다. 이를 통해 새롭게 제시된 전극촉매는 연료전지의 음극, 양극 전극 모두에 이용될 수 있으며, 촉매의 활성도와 내구성이 뛰어나며 우수한 전기화학적 특성을 보이는 것으로 밝혀졌다. 본 연구에서 개발한 촉매합성을 위한 기술은 향후 성능이 더 우수한 촉매를 설계하는데 크게 응용될 수 있을 것으로 예상된다. KIST 유성종 박사는 “이번 연구는 친환경 수소 연료전지의 상용화를 한 발 앞당겼다는데 큰 의미가 있다” 며, 최근 전력공급 부족에 의한 블랙아웃을 대비한 가정용 발전기 등의 비상발전용 기술로도 활용 가능성이 높다” 라고 말했다. 금번 연구는 촉매합성과 설계부문으로 나누어 진행되었으며 촉매합성연구는 KIST 연료전지연구센터에서 주도하여 지경부 신재생에너지 사업의 원천기술개발과제, 기초기술연구회 협동연구과제 및 KIST 기관고유 사업을 통해 수행되었고, 촉매설계연구는 KIST 전자재료연구센터의 주도로 미래부 원천기술개발사업인 나노소재기술개발사업을 통해 수행되었다. ○ 연구진 ○ 그림설명 <그림> 2단계로 진행되는 코어-쉘 촉매 합성 모식도 균일한 사이즈를 가지는 핵심 입자위에 원자수준의 백금 층을 형성시키기 위해 백금 층을 형성하는 금속 전구체를 에스테르계 환원제로 환원시키는 방법을 사용하였다. 선택적인 원자수준의 백금 층 형성 반응은 유기화학 반응에서 느린 수소 이동 반응에 많이 사용되는 것으로 알려져 있는 한츠 에스테르(Hanztsch ester)를 환원제로 사용하였다.
- 4
- 작성자국가기반기술연구본부 연료전지연구센터, 차세대반도체연구소 전자재료연구센터 공동
- 작성일2013.04.01
- 조회수52731
-
3
그래핀 반도체 상용화 기술 개발
그래핀 반도체 상용화 기술 개발 - KIST-MIT-동국대 공동연구팀, 새로운 소재와의 결합 통해 기존 그래핀의 한계 극복 - 전자 소자로서의 그래핀 상용화 가능성 높아져 그래핀은 전도성이 높고 강도가 강하며, 탄성이 뛰어나 꿈의 신소재라 불리며 전 세계적으로 활발히 연구되고 있다. 하지만 띠간격(band gap)이 없어 금속성을 지니고, 가장자리가 불안정하며 적합한 기판이 없어 전자소자로의 응용에 많은 어려움이 있었다. 이러한 문제점들을 해결할 수 있는 방법이 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 전북분원(분원장 홍경태) 복합소재기술연구소 소프트혁신소재연구센터 김수민 박사팀은 미국 메사추세츠 공과대학(MIT) Jing Kong 교수, 동국대학교 융합에너지신소재공학과 김기강 교수 연구팀 등과 함께 국내 최초로 그래핀과 보론나이트라이드를 이용한 결합 구조 구현에 성공했다고 밝혔다. 이번 연구 성과는 나노 분야의 세계적 권위지인 나노레터스(Nano Letters) 3월호에 게재되었다. 그래핀은 전자의 이동도가 높은 물질이다. 때문에 기존 반도체 실리콘(Si)의 대체 물질로 전자소자 등의 분야에 높은 활용성을 보일 것으로 기대되어 왔다. 하지만 가장자리에서의 전자 산란으로 인한 불안정성과, 기존에 기판으로 사용되어 온 산화 실리콘의 거친 표면으로 인한 전하이동도의 저하로 그동안 응용과 상용화에 어려움을 겪어왔다. 때문에 그동안 그래핀을 전자소자로 활용하기 위해 이러한 한계를 극복할 수 있는 방법에 대한 연구가 꾸준히 진행되어 왔다. 공동연구팀은 이러한 기존의 단점을 개선하기 위해 그래핀과 같은 육각형 모양을 가진, 탄소가 아닌 보론과 질소로 이루어진 보론나이트라이드를 이용하여 그래핀이 가지고 있는 문제점을 개선시킬 수 있는 새로운 하이브리드 구조를 구현하는데 성공했다. 화학증착법을 이용하여 그래핀과 보론나이트라이드 두 물질을 단층, 혹은 적층 구조의 결합 구조로 구현한 결과, 단층 결합 구조가 그래핀 가장자리의 전자 산란을 감쇠시키는 것으로 나타나 띠간격이 있는 그래핀 나노 리본 연구에 큰 기여를 할 것으로 예상된다. 그래핀은 탄소로 이루어진 구조를 가지고 있지만 탄소가 아니라 수소나 산소 같은 원소들이 붙어서 그래핀의 가장자리가 불안정해질 경우 전자 이동이 방해받는 단점이 있었다. 연구팀은 이 가장자리를 그래핀과 비슷한 구조인 질소와 보론으로 이루어진 보론나이트라이드로 구현하는데 성공, 그러한 단점을 극복한 것이다. 또 적층 구조의 경우 보론나이트라이드를 기판으로 적용한 결과 그래핀이 금속성에서 반도체성으로 전환되었으며, 기존 산화 실리콘의 거친 표면으로 인한 그래핀의 전하이동도 저하 문제 또한 개선되었다. 이는 전자소자로서의 그래핀 연구에 큰 돌파구를 마련한 것으로, 향후 투명하면서 휘어지는 태양전지, 투명전극, 트랜지스터 등의 소프트 일렉트로닉스 분야에 큰 기여를 할 것으로 기대된다. KIST 김수민 박사는 "이번 연구는 그래핀 전자소자 연구의 최대 난제를 해결할 수 있는 새로운 연구 방향을 제시한 것으로 추후 새로운 소재를 통한 하이브리드 구조 연구에 기여할 것으로 기대된다" 고 말했다. 이번 연구는 KIST 및 교과부의 연구비 지원으로 수행되었다. ○ 연구진 ○ 사진설명 <그림> 그래핀과 보론 나이트라이드를 이용한 평면, 적층 구조의 하이브리드 연구 그래핀과 보론나이트라이드 두 물질을 이용하여 단층 혹은 적층 구조의 하이브리드 구조를 합성하였다. 합성 방법에 따라 구조를 달리 조절할 수 있으며, 단층 구조일 경우 그래핀 가장자리가 안정화되어 Raman 에서 D-band가 적게 나타남을 확인할 수 있다. 그리고 적층 구조에서는 보론나이트라이드 위에 그래핀을 적층 구조로 합성 시켜서 일반적으로 거친 산화실리콘 표면에서 오는 문제점을 평평한 표면의 보론나이트라이드를 합성하여 그러한 문제점을 감소시켜 그래핀의 본래의 특성을 잘 유지시켜주는 것을 보여주었다. 오른쪽 그림의 전자투과현미경 이미지에서는 적층구조로 합성한 결과 그래핀과 보론나이트라이드가 AA-like 혹은 AB-stacking 으로 구조화되어 합성 방법으로서 적층 구조 제어를 했다는 것을 보여주었다.
- 2
- 작성자전북분원 복합소재기술연구소 소프트혁신소재연구센터 김수민 박사팀
- 작성일2013.03.20
- 조회수25004
-
1
치매의 원인을 밝혀내다
치매의 원인을 밝혀내다 - KIST-포스텍-성균관대 공동연구팀, 뇌 활동을 저해하는 단백질의 기전 규명, 치매 원인 밝혀내 - 치매 예방 및 치료의 새로운 방향 제시 전체 치매환자 중 약 30%는 알파시뉴클린(alpha-synuclein)이라는 뇌신경세포 단백질의 변질에 의해 발병된다고 알려져 있다. 알파시뉴클린은 건강한 뇌세포에서는 뇌의 활성을 도와주는 이로운 물질이지만 자기들끼리 서로 엉키게 되면 치명적인 독소로 변해 치매, 파킨슨병 등 다양한 퇴행성 뇌질환을 일으키는 두 얼굴을 가진 물질로 알려져 왔다. 하지만 지금까지 이 독소체가 어떠한 방법으로 뇌세포 활동에 해를 끼쳐 치매를 일으키는지는 알려져 있지 않았다. 한국과학기술연구원(KIST, 원장 문길주) 의공학연구소 테라그노시스연구단 신연균 교수(KIST 겸직연구원, 아이오와 주립대 교수), 포스텍(총장 김용민) 시스템생명공학부 이남기 교수, 성균관대(총장 김준영) 유전공학과 권대혁 교수 공동연구팀은 하나의 포낭 주머니가 세포막에 융합되는 과정을 실시간으로 관찰할 수 있는 첨단 단분자 융합 연구방법을 이용, 알파시뉴클린 응집독소체가 뇌 활동의 가장 중요한 부분인 시냅스에서의 신경전달물질 분비를 저하시켜 기억 및 인지 활동의 저해를 가져와 치매를 유발할 수 있다는 사실을 발견했다고 밝혔다. 이번 연구 성과는 치매의 원인을 규명한 획기적인 것으로 관련 내용은 19일 미국국립과학원회보(PNAS) 온라인 판에 게재되었다. 시냅스에서의 신경전달물질 분비는 이를 저장하는 포낭 주머니가 뇌세포막에 융합하여 일어난다. 공동연구팀은 스내어(SNARE)라는 단백질이 어떠한 과정을 통해 개개의 포낭을 세포막에 융합시키고 그 융합과정을 조정하는지를 단계별로 분리 측정하는데 성공하였다. 이 과정에서 알파시뉴클린은 정상적인 상태에서는 스내어 단백질을 돕는 역할을 하지만(왼쪽 그림), 여러 개가 엉켜 독소로 탈바꿈하면 스내어 단백질에 들러붙어 이들의 세포막 융합 활성을 무력화 시키는가 하면, 여러 개의 포낭 주머니들을 응집하도록 만들어 시냅스로의 신경전달물질 분비를 급격히 저하시킨다는 것을 알아냈다(오른쪽 그림). 이는 시냅스의 신경전달 기능을 약화시키고 뇌의 기억 및 인지 활동의 약화를 가져오게 된다. KIST 신연균 교수는 "이번 발견은 치매를 효과적으로 예방하고 치료할 수 있는 새로운 방향을 제시해 준다는데 큰 의미가 있다" 며 "치매 유발의 또 하나의 중요 인자인 베타아밀로이드(beta-amyloid)라는 단백질 또한 비슷한 메커니즘을 통해 치매를 유발할 것으로 보이며, 스내어 단백질의 무력화가 대다수의 치매 발병의 근본적 원인 중의 하나일 것으로 예상된다" 고 말했다. 한편 신연균 교수는 단분자 이미징과 EPR(Electron Paramagnetic Resonance)을 이용한 단백질 구조분석에 원천기술을 보유한 점을 높게 평가받아 KIST 의공학 연구소의 해외 과학자 유치사업을 통해 지난 2011년, KIST로 초빙되었다. 신 교수는 KIST의 전폭적 지원하에 KIST 내에 기초 연구를 수행할 수 있는 연구실을 구축하고 신경 전달과정 매커니즘에 관한 연구를 진행중이며 이를 통해 치매 등 정신질환 연구에서 세계를 선도하는 원천기술 확보를 위해 매진하고 있다. 이번 연구는 KIST 및 교과부, 미국국립보건원(NIH)의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림설명 (좌) 정상뇌세포에서 포낭 주머니가 세포막에 융합되어 신경전달물질이 시냅스로 분비되고 이를 다음 뇌세포막에 있는 수용체가 인지하게 되어 뇌세포간의 신경전달이 이루어진다. (우) 치매환자의 경우 알파시뉴클린 응집독소체가 포낭 표면의 스내어 단백질에 들러붙어 포낭 엉킴을 일으켜 포낭 융합을 방해하고 신경전달을 마비시킨다.
- 0
- 작성자의공학연구소 테라그노시스연구단 신연균 박사
- 작성일2013.02.19
- 조회수33643
-
-1
상온작동 다기능 스핀논리소자 개발
상온작동 다기능 스핀논리소자 개발 - 저온에서만 작동하는 스핀트랜지스터의 온도 한계 극복 - 한 칩에 다양한 기능 직접 가능, 세계 반도체 분야 기술혁신 이끌듯 순수 국내 연구진이 전자의 자기적 특성을 활용해 상온에서 작동하는 다기능 스핀논리소자를 개발하는데 성공했다. 이 소자를 활용하면 영상, 음악, 인터넷, 정보저장 등 여러 가지 기능을 사용자의 필요에 따라 손쉽게 전환할 수 있어 기존 실리콘 반도체를 대체하는 다기능 스핀논리소자로 활용 가능성이 높을 것으로 기대된다. 한국과학기술연구원(KIST, 원장 문길주) 스핀융합연구센터 장준연 박사, 광전융합시스템연구단 송진동 박사 연구팀은 고려대학교 디스플레이반도체물리학과 이긍원, 홍진기 교수 연구팀과의 공동연구를 통해 저온에서만 작동했던 스핀트랜지스터의 한계를 극복한 상온작동 스핀논리소자를 개발했다고 밝혔다. 연구결과는 1월 31일(온라인판, 오프라인 게재는 2월 7일 예정), 과학계 최고 권위를 자랑하는 네이쳐(Nature)에 게재되었으며 ‘주목할만한 연구(featured paper)’ 로도 선정되어 국제적으로 큰 관심을 끌고 있다. 최근 정보처리 기술은 스마트폰 등의 휴대용 전자기기의 발전과 함께 저전력, 초고속, 고성능 정보처리를 요구하고 있다. 자기적 특성을 이용한 논리소자는 전원이 꺼져도 정보가 소멸되지 않는 비휘발성을 갖고 있어 소비전력을 감소시키면서도 컴퓨터의 연산효율을 증가시킬 수 있으며, 다기능 가변형 논리 동작과 비휘발성 메모리가 동시에 집적된 새로운 형태의 논리 회로도 구현 할 수 있어 효율적인 대안으로 제시되고 있다. 이러한 우수한 특성에도 불구하고 스핀논리소자는 낮은 신호 대 잡음비, 집적도의 한계 및 낮은 작동 온도 등으로 인해 응용 가능성이 낮은 것으로 인식되어 왔다. 스핀 분극된 전자를 이용하는 스핀트랜지스터는 캐리어의 스핀방향에 따라 전기저항이 변화하는 특성을 이용하는데 저온에서만 작동하는 특성을 갖고 있어 효과적인 대안으로 제시되지 못하고 있었다. 이러한 한계를 극복하기 위해 KIST-고려대 공동연구팀은 외부 자기장에 따라 전기저항이 매우 민감하게 변화하는 인듐비소(InSb) 반도체에 주목 하였다. 인듐비소 반도체는 전자의 이동도가 높고, 유효질량이 작아 낮은 인가 전압에서도 과잉 전자가 쉽게 생성되며 외부 자기장의 방향에 따라 전기 전도도가 크게 변화하는 특성을 갖고 있다. 연구팀은 분자빔박막성장장치(MBE)를 이용하여 원자층 수준으로 조성과 표면상태를 정밀 조절하여 고품질의 인듐비소 전자-정공 접합 반도체를 제작하였다. 그 결과 자기장으로 제어되는 스핀논리소자를 개발하는데 성공, 기본적인 논리연산인 AND, OR, NAND, NOR 연산기능을 상온에서 성공적으로 구현하였다. 또한 이 소자는 인가전압에 따라 자유롭게 연산기능을 변화시킬 수 있어(예를 들면 OR 에서 AND 또는 그 반대) 사용자의 필요에 따라 다양한 기능 구현이 가능하다. 이러한 가변형 다기능 특성으로 인해 주변환경에 따라 시시각각으로 피부색을 변화시킬 수 있는 카멜레온에 빗대어 카멜레온 프로세서라고 부르기도 한다. 이 소자가 상용화되면 한 개의 칩으로 모든 기능을 수행할 수 있어 스마트폰과 같은 전자 제품의 크기와 소비전력을 획기적으로 줄일 수 있으며, 메모리 및 논리 소자를 한 칩에 집적할 수 있어 컴퓨터를 부팅과정 없이 바로 실행할 수 있고 처리속도 또한 획기적으로 증대시킬 수 있다. 이러한 이유로 미국을 중심으로 한 선진국에서는 스핀을 이용한 전자소자를 차세대 반도체 소자 핵심기술로 인식하고 많은 연구가 진행되어 왔다. 하지만 전기적 동작이 가능한 스핀소자를 실제로 구현한 데 이어 상온에서 동작하는 스핀논리소자를 개발한 것은 이번이 처음이다. 이번 연구는 스핀전자소자의 동작온도 한계를 근본적으로 돌파 한 것으로 세계 각국과 학계의 많은 관심을 받고 있다. 한편 KIST는 지난 2009년, 기존에 이론으로만 제시되어왔던 전자의 스핀을 이용한 ‘스핀트랜지스터 소자’ 기술을 세계 최초로 개발하여 사이언스지에 발표한 데 이어 상온에서 동작하는 스핀논리소자를 개발하는 개가를 이루었다. 이번 연구로 저온에서만 작동하는 스핀소자의 기술적 한계를 극복했을 뿐만 아니라 메모리 소자에 치우쳐 있는 한국 반도체 산업을 논리소자로 확대할 수 있어 실리콘 기반 반도체에 이어 차세대 반도체 산업에서도 한국이 세계적 기술 경쟁에서 유리한 고지를 선점할 수 있게 되었다. 이 연구는 주로 KIST 기관고유사업인 ‘스핀제어 정보소자기술 개발’ 연구과제 지원으로 수행되었다. ○ 연구진 ○ 사진설명 <그림 1> 다기능 스핀논리소자의 별명인 “카멜레온 프로세서” 를 나타낸 삽화 몸 색깔이 주변 환경에 따라 자유자재로 변하는 카멜레온을 반도체 칩 위에 나타내고 카멜레온의 피부색을 연두색(계산), 붉은색(음악), 노란색(인터넷), 보라색(정보저장)으로 표시하여 사용자의 필요에 따라 기능 전환이 가능한 다기능 스핀논리소자의 특성을 도식적으로 나타냄 <그림 2> (a) : 본 연구에 사용한 인듐비소 전자-정공 접합소자와 측정방법을 나타낸 개략도 (b) : 다양한 전압에서 소자의 면에 평행하게 자기장을 인가할 때, 소자에 흐르는 전류의 변화를 나타낸 그림 (c) : 다양한 전압에서 소자의 면에 수직으로 자기장을 인가할 때, 소자에 흐르는 전류의 변화를 나타낸 그림 - (a)는 소자의 개략도. 제작된 소자의 채널 폭은 10 ㎛, 길이는 120 ㎛ - (b),(c) 는 다양한 인가 전압 (Vbias)에서 자기장의 크기와 방향에 따른 채널 전류의 변화를 보여줌 - 전류는 자기장에 따라 단순 증가하다가 특정 자기장에서 급격하게 증가함 - 기존 반도체 다이오드와는 달리 자기장에 의해 스위칭 작용을 함 <그림 3> AND, OR 논리연산을 위한 논리소자와 그 특성 - (a)는 AND. OR 논리연산을 모두 수행하는 회로 - 채널면에 평행한 z축의 양또는 음의 자기장 방향을 입력 신호 "1"과 “0”으로 표시 - 채널전류의 높고(100mA) 낮은(40mA) 상태를 각각 “1” 과 “0”의 출력신호로 정의 - 각 입력신호에 대한 출력신호를 <그림 3> (e)에 표로 정리하였음 - 인가전압 Vtotal의 크기로 AND 와 OR 연산기능을 변경 할 수 있는 가변형 논리 게이트를 나타냄. <그림 4> NAND, NOR등 다양한 논리게이트 동작 - (a)에서 PN 소자는 동일한 자기장 방향 (입력 값) 에서 NP소자의 부정 (NOT)으로 NOT 기능 - (b)는 두 개의 NP 소자 (NP3, NP4)와 PN 소자 (PN1, PN2)로 이루어진 NAND, NOR 논리게이트 회로 - 두 회로의 실험적 결과는 오른쪽의 진리표에 정리되어 있음
- -2
- 작성자차세대반도체 연구소 스핀융합연구센터, 광전융합시스템연구단 공동
- 작성일2013.01.31
- 조회수32255
-
-3
대량생산 가능한 박막태양전지 기술 개발1
바르고 오븐에서 굽기만 하면 태양전지 끝∼ KIST, 대량생산 가능한 박막태양전지 기술 개발 - 저비용 코팅 공정 통해 세계 최고 수준 고전압 성능 달성 - 제조비용 절감 및 대량생산에 한발 더 가까이 기존과 다른 획기적인 제조 공정을 사용하여 저렴하면서 고전압을 구현하는 박막태양전지 기술이 국내 연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 청청에너지연구센터 민병권 박사팀은 프린팅 방법과 같은 저가형 공정을 이용하여 고전압을 낼 수 있는 박막태양전지 기술을 개발했다고 밝혔다. 태양전지 제조에 있어 용액을 통한 페이스트 코팅 제조 공정은 박막태양전지의 제조 비용을 획기적으로 줄일 수 있는 핵심 기술로 알려져 있다. 기존의 진공 증착법 공정에서 필요한 고가의 진공장비가 필요없고, 인듐과 같은 고가 원료의 손실이 적으며 매우 빠른 공정 속도를 구현할 수 있기 때문이다. 또한, 고전압을 만들어 낼 수 있는 박막태양전지 기술은 태양전지 모듈에서 일반적으로 발생하는 전기 손실을 줄여 궁극적으로 모듈의 효율성을 향상시키는 중요 기술이다. 보통 태양전지는 단위셀들을 많이 연결할수록 저항이 커져 효율이 감소하게 되는데 단위셀 자체가 고전압을 발생하게 되면 그만큼 모듈에 들어가는 단위셀의 숫자가 줄어들어 전체적으로 효율 감소가 줄어들기 때문에 단위셀의 전압을 높이는 것이 태양전지 효율성 확보의 관건이라 할 수 있다. 고전압 박막태양전지를 구현하기 위해서는 넓은 띠간격(wide band-gap)을 갖는 반도체 박막을 제조해야 한다. 띠간격은 반도체에서 전자가 채워져 있는 띠와 그렇지 않은 띠 사이의 간격(에너지 차이)을 의미하는데 넓은 띠간격을 가질수록 태양전지가 고전압을 발생할 가능성이 커진다. 하지만 반도체 물질의 띠간격이 너무 크게 되면 그 만큼 빛 흡수 양이 적어져 효율이 감소하기 때문에 고전압이 발생하면서 효율이 최대가 될 수 있는 최적의 띠간격을 발견, 유지하는 것이 중요하다. KIST 민병권 박사팀은 기존에 사용하던 셀레늄(Se) 대신 황(S)으로 이루어진 CIGS(구리-인듐-갈륨-황 화합물) 박막을 간단한 특수 용액을 기판에 바르는 페이스트 코팅법으로 제조하여 띠간격 1.5eV 이상을 갖는 박막 구현에 성공하였으며 이를 적용한 태양전지 소자 제작을 통해 태양광-전기 변환 효율 8.3%, 개방전압 787mV 의, 현재 보고된 저가형 고전압 CIGS 박막태양전지 중 세계 최고 효율을 달성하였다. 독성이 강하고 폭발성이 큰 용매를 사용하거나, 글러브 박스(glove box)와 같은 제한된 공간에서만 실험이 가능했던 페이스트 코팅 공정을 알코올과 같은 비교적 안전한 용매를 이용하여 일반 공기중에서 구현이 가능하도록 개선하여 적용시킨 것이다. 페이스트 제조와 코팅 과정이 보통의 대기 중에서 이루어지게 되면 태양전지의 대면적화 및 대량 생산에 매우 유리하며 더 나아가 고전압이 요구되는 태양광-물분해 수소 제조의 광전극 기술로도 응용이 가능하다. 민병권 박사는 “이번에 개발된 박막태양전지 제조 기술은 저렴한 비용으로 대량생산이 가능하기 때문에 발전용뿐만 아니라 건물용 태양전지로도 적용이 가능하며, 유연성 기판에도 적용할 수 있어 다양하게 응용할 수 있다”며 “또한, 태양광을 이용하여 물을 분해해 수소를 생산하는 기술에는 2V 이상의 전압이 필요한데, 고전압을 낼 수 있는 이번 기술이 응용될 수 있다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 교육과학기술부 신기술융합형 성장동력사업의 연구비 지원으로 수행되었으며, 지난 1월 11일, 태양전지분야 최고 권위지인 ‘Progress in Photovoltaics' 온라인판에 게재되었다. ○ 연구진 <민병권 박사> ○ 사진설명 좌: 페이스트 코팅법에 의해 제조된 태양전지 박막 모습, 우: 고전압을 발생하는 저비용 박막태양전지 소자 특성
- -4
- 작성자국가기반연구본부 청정에너지연구센터 민병권 박사팀
- 작성일2013.01.25
- 조회수34509