보도자료
-
65
세포 생존에 필수적인 청소(오토파지) 장애 원인 찾다
세포 생존에 필수적인 청소(오토파지) 장애 원인 찾다 - 세포내 자식작용 조절자 UVRAG의 저격수, Mir125a와 Mir351 규명 - EWSR1분자 이상과 관련된 루게릭병등의 신경퇴행성 질환 질환에서 고장난 자식작용의 원인 밝혀 자식작용이라 불리는 오토파지(Autophagy)는 불필요한 세포내 단백질 및 손상된 세포내 소기관을 분해하는 역할을 수행함으로써 세포의 생존 및 항상성 유지를 위한 필수적인 역할을 한다. 세포내에 비정상적인 단백질이 쌓여 주로 발생하는 신경퇴행성 질환 역시 이 과정에 오토파지가 중요한 역할을 하고 있다. 따라서, 오토파지를 높이는 물질이 치료제로서 쓰이고 있지만 약물의 작용 원리는 아직 밝혀져 있지 않다. 국제 연구진이 오토파지를 돕는 분자의 조절 매커니즘을 밝혀, 오토파지에 관련된 질병 진단 및 약물 개발에 중요한 실마리를 제공할 것으로 보인다. 한국과학기술연구원(KIST, 원장 이병권) 뇌의약 연구단 류훈 박사팀은 “EWSR1/EWS(유잉육종 유전자) 결핍 상황에서 마이크로 RNA인 Mir125a와 Mir351가 증가하는 것을 발견하고 이들이 Uvrag 전사체 양을 감소시켜 오토파지(Autopagy, 자식작용)의 이상을 유발한다.”는 연구 내용을 밝혔다. 연구진은 EWSR1 유전자가 결핍된 세포에서 오토파지가 억제됨을 확인하고, 관련 메커니즘을 밝히는데 주력하였다. 그 결과 자식작용을 돕는 분자로 알려진 Uvrag분자가 EWSR1 유전자에 의해 조절되는 매커니즘을 밝혔다. EWSR1 유전자의 감소가 Mir125a와 Mir351과 같은 마이크로 RNA를 생성하는 새로운 경로에 영향을 미치고 이를 통하여 Uvrag을 감소시킴으로써 자식작용을 억제하고 있음을 밝힌 것이다. o EWSR1 유전자가 없는 세포를 관찰한 연구진은 핵속에 존재하는 RNAase III 단백질인 Drosha 효소가 증가하고 이로 인해 Mir125a와 Mir351의 생성도 증가함을 발견했다. Mir125a와 Mir351는 Uvrag 전사체를 감소시킴으로써, 결과적으로 세포내 자식작용을 억제하는 원인이 되고 있었다. 연구팀은 생쥐의 뇌, 피부, 척추 등 다양한 부위에서 관련 매커니즘을 조사한 결과 각각 조직에서 공통적으로 관련 현상이 발현되는 것을 확인할 수 있었다. (그림 3 참고) 보스턴 의과대학 교수이자 KIST 겸임 연구원으로 재직중인 류훈 박사는 “EWSR1 돌연변이는 루게릭병에서 관찰되는 것으로, 관련 연구는 루게릭병 약물 개발 및 뇌, 신경, 척수신경 등 세포의 기능 및 이상 현상의 원인과 관련된 질병을 진단하는데 필요한 생체마커로 활용할 수 있을 것으로 보인다”고 밝혔다. 본 연구는 KIST 기관고유연구사업에서 지원되었으며, 연구 결과는 관련 분야 권위지인 ‘Authophagy’ 5월 6일자 온라인에 게재되었다. *(논문명) "Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency" - (제1저자) 한국과학기술연구원 김연하 박사 - (교신저자) 한국과학기술연구원 류훈 박사 <그림 1> 연구결과를 요약하여 보여 주는 것으로 EWSR1/EWS (유잉육종 유전자) 결핍 상황에서 Mir125a와 Mir351를 통해 Uvrag 전사체 양을 감소시켜 자식작용에 이상이 일어남을 보여준다 <그림 2> 자식작용 (autophagy) 관련 유전자들로 구성한 단백질과 단백질 상호작용을 분석한 네트워크. Ewsr1/Ews (유잉육종 유전자)가 결핍된 세포로부터 얻은 RNA-sequencing 데이터를 토대로 autophagy 유전자 중 변화가 있는 57개의 유전자에 의해 구성되는 단백질과 단백질의 상호작용을 보여준다. <그림 3>EWSR1-/-생쥐의 피부(Skin), 척수(Spinal cord), 대뇌(Cerebral Cortex), 중뇌(Midbrain) 및 소뇌에서의 UVRAG 단백질양 및 자식작용의 변화가 Ewsr1+/+생쥐모델 보다도 감소되어져 있음을 알수 있다. EWSR1의 결핍에 의해 UVRAG의 감소와 더불어 자식작용의 억제가 각각의 조직에서 공통적으로 관찰되었다.
- 64
- 작성자뇌의약 연구단 류훈 박사팀
- 작성일2015.05.27
- 조회수23850
-
63
나노구조의 금박막으로 고효율 연료전지 촉매 개발
나노구조의 금 박막으로 고효율 연료전지 촉매 개발 - 나노구조화된 금 박막에 금속산화물 입자를 입혀 연료전지의 수소산화반응 효율을 높이고 반응기작을 규명, 국제저널 표지논문으로 선정 - 공정단순화 및 고효율 촉매재료 개발로 저비용 고효율 연료전지 개발 더욱 앞당겨 금은 매우 안정된 성질을 가지고 있지만, 크기가 작아져 나노미터 (nm)가 되면 여러 화학반응에 대해 매우 높은 활성을 띄어 다른 촉매보다 반응이 커지는 놀라운 성질을 나타낸다. 국내 연구진이 금 나노입자와 비슷한 촉매활성을 보이면서도 지지체나 전극에 고정시키는 추가 공정이 필요없는 나노구조의 금 박막을 개발했다. 이 재료는 기존 백금촉매와는 다르게 일산화탄소 흡착에 의한 성능저하 문제가 발생하지 않아, 저비용 고효율 연료전지 개발을 앞당길 수 있을 전망이다. 한국과학기술연구원(KIST, 원장 이병권)은 물질구조제어연구센터의 김상훈 박사와 기초과학연구원(IBS) 나노물질 및 화학반응 연구단 그룹리더 박정영 교수 연구진(KAIST EEWS 대학원 교수)이 “연료전지 기본반응인 수소 산화 반응을 위해 나노구조화한 금 박막에 금속산화물 입자를 입혀 촉매 반응효율을 향상시키는 원리를 규명하였다”고 밝혔다. 금 나노입자는 활성이 높아 촉매에 사용되면 촉매 효율을 높일 수 있다고 알려져있다. 일반적인 촉매를 사용하는 경우 일산화탄소의 산화반응은 최소한 100oC를 넘어야 일어나는데 비해, 1~3 nm 정도의 금 입자는 같은 반응을 영하온도에서도 가능하게 할 정도로 활성이 높다. 그러나 이러한 금 나노촉매를 촉매나 전극으로 사용하기 위해서는 전기가 흐르는 몸체에 금 나노를 고정해야한다. 또한 금 입자를 고정을 시키더라도 반응 중에 입자들이 유실되기 쉬워, 안정성과 재현성이 낮아 사용하기 어려웠다. 연구팀은 100 nm 정도 두께의 얇은 막으로 나노구조화 된 금 박막을 개발했다. 나노 금 박막은 박막의 한쪽 끝을 장치에 연결시키면 바로 전극으로 사용할 수 있기 때문에 전극이나 촉매가 필요한 장치에 바로 쓸 수 있다. 또한, 기존 연료전지의 백금촉매에는 일산화탄소의 흡착이 매우 강해 흡착한 일산화탄소가 표면을 덮어버려 촉매성능이 급격히 낮아지는 일산화탄소 피독 문제가 있었다. 금은 이러한 문제를 가지고 있지 않아 연료전지용 수소산화반응 촉매로서의 장점이 있는데, 금 박막 자체의 촉매 성능이 그리 높지 않은 것이 문제였다. 연구진은 이 문제를 해결하기 위해 금속산화물인 이산화티타늄 입자를 금 박막에 뿌렸다. 그 결과 이산화티타늄입자가 금 박막과 만나는 경계면에서 촉매활성이 최대 5배 높아졌다. 복잡한 나노 금 박막 구조의 촉매 활성이 나타나는 원리를 규명하기 위해, 연구팀은 나노구조화된 금 박막에 나노크기의 이산화티타늄(TiO2) 나노입자를 분산시켜 이산화티타늄이 금 박막과 접하는 경계면을 활성점으로 사용한다는 가설을 세웠다. 이 촉매 재료를 수소산화반응에 적용시켰을 때, 반응에 대한 촉매효율이 이산화티타늄을 분산하지 않았을 때 보다 최고 5배정도 높아지는 것을 발견하였다. 한편, 반응효율은 이산화티타늄이 너무 많이 분산되면 오히려 낮아졌는데, 이는 분산된 이산화티타늄이 금 박막 표면을 과다하게 덮어버려 활성점으로 작용하는 이산화티타늄와 금 경계면이 오히려 줄어들었기 때문이다. 이를 통해 연구팀은 이산화티타늄과 금 경계면이 수소산화반응에 대한 활성점으로 작용한다는 것을 밝혔다. KIST 김상훈 박사와 IBS의 박정영 교수는 “현재 촉매로 쓰이는 백금의 가격이 연료전지 가격에 미치는 영향이 매우 크다”며 “본 연구로 백금 촉매를 대체할 수 있는 물질로 금의 가능성을 발견했고, 복잡한 구조의 금 박막재료가 수소산화 반응에 어떻게 촉매로 작용하는지 원리를 밝혀 고효율의 연료전지를 개발하는데 기여할 것으로 기대된다”고 밝혔다. 본 연구는 KIST 기관고유과제와 IBS 내부과제의 지원으로 수행되었으며, 연구결과는 Chemical Communications 지에 5월11일자 온라인판에 표지논문(inside back cover)으로 게재되었다. * (논문명) Tailoring Metal-oxide Interfaces of Inverse Catalysts of TiO2/Nanoporous Au under Hydrogen Oxidation - (제1저자) (한국과학기술원) Kamran Qadir 박사과정생 - (공동교신저자) 한국과학기술연구원 김상훈 박사, 기초과학연구단 박정영 교수 <그림자료> Inside 표지그림: 나노구조화된 금박막에 TiO2 입자(분홍색)가 분산되어 있고, 그 표면에서 수소분자(파란색)가 산소분자(빨간색)와 반응해 물분자 (왼쪽 상단)로 산화되는 과정을 그린 개념도 <그림 1>다공도에 따른 나노구조화된 금박막 이미지들 <그림2> 금박막표면에 분산된 TiO2 입자들에 대한 투과전자현미경 사진 <그림3> (왼쪽) 일단 TiO2가 분산되면 분산하지 않았을 때 보다(검은색) 효율이 모두 높았고, 분산된 TTIP (TiO2의 전구체)의 양에 따라 달라지는 수소산화반응의 활성도가 달라졌는데, 중간값인 TTIP 0.5 % 일 때가 가장 효율이 높았다. (오른쪽)각각의 경우 대해 계산된 반응활성에너지. TTIP 0.5 % 일 때가 가장 낮다.
- 62
- 작성자물질구조제어연구센터 김상훈 박사팀
- 작성일2015.05.19
- 조회수32248
-
61
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
- 60
- 작성자광전하이브리드연구센터 손정곤 박사, 이상수 박사팀
- 작성일2015.05.18
- 조회수26608
-
59
초저가와 고효율 달성이 동시에 가능한 신구조 플렉서블 태양전지 기술개발
초저가와 고효율 달성이 동시에 가능한 신구조 플렉서블 태양전지 기술개발 - 고가의 투명전도성 전극소재가 필요하지 않아 기존 소재의 절반 가격으로 고효율 플렉서블 태양전지 구현 가능 - 전사법을 이용하여 플렉서블한 다양한 기판에 광전극 구현이 가능해 향후 웨어러블 기기에 구현이 가능 태양전지 가격경쟁력은 전지를 구성하는 소재의 가격과 태양전지 효율에 의해서 결정된다. 국내 연구진이 현재 태양전지 가격에 큰 영향을 미치는 고가의 투명전도성 전극을 전혀 사용하지 않으면서도 고효율 달성이 가능한 신 구조 플렉서블 태양전지 원천 기술을 개발하였다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 고민재 박사팀은 고온에서 열처리 한 무기 광전극을 떼어내어 플라스틱처럼 잘 휘어지는 기판 (플라스틱, 종이, 섬유) 등에 전사하여 붙이는 방식을 이용한 신 구조 고효율의 염료감응 플렉서블 태양전지를 개발하였다고 밝혔다. 태양전지나 디스플레이 등의 전자소자는 소자의 효율 향상을 위해 가시광선 영역에서 85% 이상의 높은 광투과도와 전기 전도도를 요구하는 ITO(Indium Tin Oxide)와 같은 투명전도성 전극(Transparent conducting oxide)이 필요하다. 하지만, ITO의 주원료인 인듐은 희귀 금속으로 가격이 비싸, 차세대 태양전지인 염료감응 태양전지의 재료비 중 가장 큰 부분을 차지하고 있다. 고효율의 태양전지를 제작하기 위해서는 이러한 값비싼 투명전도성 전극외에도 무기 광전극을 고온에서 열처리하는 과정이 반드시 필요한데, 이는 무기 광전극 내부가 단단히 연결이 되고 기판과의 접착력이 좋아져서 소자저항이 작아지기 때문이다. 플렉서블 태양전지를 만들기 위해 기존에는 유연하지만 열에 약한 플라스틱 기판을 활용하기 위해 효율이 낮은 저온 공정을 사용했다. 또한 투명전도성 전극을 사용하는 경우, 태양전지를 휘었을 경우 ITO가 깨져 전기적 특성이 감소하는 등의 단점이 있었다. 연구팀이 개발한 제작방법은 유리기판 위에 고온에서 열처리한 TiO2(산화타이타늄) 전극을 형성시킨 후, 플렉서블한 기판에 옮겨 붙이는 전사 방법을 적용하여 플라스틱 기판에서 고효율의 태양전지를 구현하였다. 전사방법을 사용하면 고온 열처리한 저항이 낮은 광전극을 다양한 플렉서블한 기판에 옮겨 붙일 수 있기 때문에 고효율 달성이 용이하다. 후면전극 역시 인듐보다 상대적으로 가격이 저렴한 타이타늄 질화물(nitride)로 만들었고, 상대전극도 투명 전도성 물질을 사용하지 않고 탄소와 백금 복합체를 사용하여 플라스틱 전극 위에 제작하였다. 이렇게 제작된 염료감응 태양전지는 기존 전지에 비해 소재가격은 50% 이하로, 전체 태양전지 가격은 30%이하로 가격이 낮아지는 효과를 보였다. 또한 개발한 전사법은 휘어짐에 강한 타이타늄 계열의 광전극을 고분자 필름위에 붙여, 태양전지를 휘었을 경우에도 기판의 손상과 효율의 감소 없이 특성이 좋은 태양전지를 제작할 수 있었다. 이렇게 개발한 태양전지는 투명 전도성 물질을 전혀 사용하지 않음에도 불구하고, 보고된 염료감응 플렉서블 태양전지 중 최고 수준인 8.10%의 광변환 효율을 기록하였다. 연구책임자인 고민재 박사는 “개발한 태양전지는 기판의 종류에 상관없이 제작할 수 있고, 잘 휘어지면서도 효율이 높아 웨어러블 태양전지, 휴대 전자 소자 등 다양한 분야의 핵심소재로 활용될 수 있을 것으로 기대된다” 며 “연구팀에서 개발한 전사법을 이용하면 태양전지 이외에도 다양한 전자 기기 및 전기화학 기기 등 전자소자를 사용하는 응용분야에서 직물이나 종이, 플라스틱, 금속 등 휘어질 수 있는 다양한 기판 위에 제작할 수 있어 광범위한 응용을 기대할 수 있다”고 밝혔다. 본 연구는 KIST 주요연구사업인 영 펠로우 연구사업과 미래창조과학부와 한국연구재단이 추진하는 글로벌프런티어사업 멀티스케일 에너지시스템연구단의 지원으로 수행되었다. 연구결과는 나노 분야의 전문학술지인 ACS Nano 4월 28일자에 게재되었으며, 국내 및 해외 특허를 출원하였다. 이번 성과로 지난 '15.4.22(수) 정부가 발표한 "기후변화 대응을 위한 에너지 신산업 및 핵심기술개발전략"에서 제시한 차세대 태양전지 개발에도 더욱 탄력이 붙을 것으로 기대된다. <그림 1> 투명 전도성 전극이 없는 고효율 초저가 플렉서블 태양전지 / 전지 사이즈 2cm X 2cm의 태양전지 전류전압 곡선. (대면적인 10cm X 10cm에서도 가능) <그림 2> (a) 전사법을 이용하여 고온소성한 태양전지 광전극을 OHP 필름 위에 적용 (b) 전사법을 이용하여 염료가 흡착된 고온소성한 태양전지 광전극을 OHP 필름 위에 적용 (c) 전사법을 이용하여 고온소성한 태양전지 광전극을 염료 흡착하여 극세사(천) 위에 적용 (d) 전사법을 이용하여 고온소성한 태양전지 상대전극을 OHP 필름 위에 적용 (e) 전사법을 이용하여 고온소성한 태양전지 상대전극의 전도성을 보기 위해 밴딩 후에 LED연결 (f) 전사법을 이용하여 고온소성한 태양전지 상대전극을 극세사(천) 위에 적용 (g) 고온소성한 태양전지 상대전극을 전사법을 극세사(천) 적용 (접힌 후에도 전도성을 가지고 있음) (h) 전사법을 이용하여 고온소성한 Ag 전극을 전사하여 연필에 감싼 뒤에도 좋은 전도도를 가짐을 확인하였음. <그림 3> (a) 전사법을 이용하여 태양전지 광전극을 만드는 방법 (b) 전사법을 이용하여 태양전지 상대전극을 만드는 방법 <그림 4> 일반적인 태양전지와 신구조 태양전지의 구조 비교
- 58
- 작성자광전하이브리드연구센터 고민재 박사팀
- 작성일2015.05.07
- 조회수29103
-
57
흡연자도 싫은 흡연실 담배연기 나노촉매로 잡는다
흡연자도 싫은 흡연실 담배연기 나노촉매로 잡는다 - 니코틴, 타르 등 입자상 물질은 물론 아세트알데히드와 같은 가스상 물질을 크게 감소시키는 청정화장치 기술 KIST-KT&G 공동 개발 전국적으로 금연구역이 확대됨에 따라, 흡연실 수요가 증가하는 추세이지만 흡연실 공기질 개선방안은 미흡한 실정이다. 국내 연구진이 담배연기의 가스성분 중 가장 많은 양을 차지하는 1급 발암물질인 아세트알데히드를 100% 제거하는 흡연실 공기정화용 나노 촉매를 개발했다. 개발한 촉매는 이 외에도 니코틴, 타르 등 담배의 입자성분 역시 100% 제거해 인체에 무해한 물과 이산화탄소로 바뀌는 것으로 나타났다. 연구팀은 개발한 촉매로 만든 공기정화기를 흡연실에 설치하면 약 5평 규모 흡연실에서 10명이 동시에 피운 담배연기를 30분 내에 약 80% 이상, 1시간 내에는 100% 처리할 수 있다고 밝혔다. 한국과학기술연구원(원장 이병권) 환경복지연구단 정종수, 배귀남 박사 연구팀은 “흡연실에 사용 가능한 망간산화물계 나노촉매를 코팅한 나노촉매 필터를 ㈜KT&G와 공동으로 개발하여 흡연실 실내의 담배연기의 주요 성분을 크게 감소시킬 수 있는 청정화시스템을 개발했다”고 밝혔다. 기존 흡연실에서 담배연기 제거에 쓰이는 필터는 가스상 물질의 제거를 위한 활성탄 필터를 사용하지만, 아세트알데히드 등 가스상 물질의 제거 효과가 적고, 흡연실과 같은 시설에서는 흡착성능이 빨리 감소해 2주마다 교체해야해 관리가 어려웠다. 연구팀은 망간산화물계열(Mn/TiO2)의 나노촉매를 세라믹계열의 필터에 균일하게 코팅하여 나노촉매필터를 제조했다. 나노촉매필터는 필터에 코팅한 나노촉매 표면에서 공기 중의 오존을 분해시켜 발생된 산소라디칼을 이용하여 담배연기 성분을 분해하는 기술이다. 담배연기의 가스상 성분 중 가장 많은 양을 차지하는 아세트알데히드와 니코틴, 타르 등 총 휘발성 유기화합물(total volatile organic compounds: TVOC)을 이용하여 본 개발 촉매의 성능을 평가한 결과, 98% 이상 분해하는 성능이 확인되었다.(그림 3 참고) 망간 촉매 표면에서 생성된 산소라디칼은 유해성분 분해 후 인체에 무해한 산소의 형태로 외부로 배출된다. 연구팀은 제조한 나노촉매필터를 활용한 청정화장치 시제품을 제작하여, 약 8평 규모의 실제 흡연실에 설치하여(처리유량 4 CMM) 성능 평가를 진행한 결과, 30분 내 약 80%, 1시간 내에 100% 담배연기 성분이 인체에 무해한 물과 이산화탄소로 처리되는 것을 확인했다. 이는 약 8평 규모 흡연실 실내의 전체 공기를 15분마다 1회 순환시킬 수 있는 처리유량으로 설계한 것이다. *처리유량 4 CMM : 1분당 청정화장치로 투입되는 공기량이 4 입방미터 연구팀은 이미 나노촉매 및 필터 코팅 기술 개발이 완료된 만큼 1년 정도의 시간이면 상용화가 가능할 것으로 예상했다. 연구를 주도한 정종수, 배귀남 박사는 "간단한 촉매를 설치한 청정기로 기존 흡연실 담배연기처리기술에서 처리가 어려웠던 가스상물질 처리 문제를 해결했다는 것이 연구의 의의”라며 “이러한 장치의 단순화 및 경제성 확보를 달성하여 안전하고 쾌적한 흡연 공간의 제공에 크게 도움이 될 수 있으며, 또한 이 기술의 연계 개발을 통해 공기청정기, 에어컨 등 다양한 공기청정 분야에서 적용할 융합기술을 선보일 수 있을 것이다“라고 전했다. 본 연구는 KIST 기관고유사업과 환경부 “나노기술 기반의 오염제어용 필터소재 개발 과제” 등을 통해 지원되었고, 관련하여 “담배연기 청정화 처리장치 및 방법(대한민국 특허 출원번호: 2015-0039021, 2015.3.20.)” 특허를 출원하였다. <그림설명> <그림 1> 흡연실 담배연기 청정화 장치 나노촉매 및 코팅 필터 제조 공정 모식도. (1단계) CVC(화학기상응축법)에 의한 나노 TiO2 지지체 입자 합성, (2단계) TiO2 지지체에 망간계 촉매 담지시켜 담배연기 분해 기능성 촉매 소재 합성. (3단계) 합성된 촉매를 하니컴 구조체에 코팅하여 나노촉매필터를 제조하는 방법을 나타내고 있다. <그림2> (1) 청정화장치 내의 유동을 위해 상부에 순환 팬이 설치되어 있고, 오존을 공급하는 UV 램프, 그리고 오염물질 처리 나노 촉매 필터 순으로 장치가 구성되어 있다. 순환 팬은 5평형 기준으로 약 4 CMM(m3/min)으로 작동된다. (2) 실제 흡연실 현장에 설치된 담배연기 청정화장치 시제품 사진 <그림 3> 담배연기 및 연기 성분이 제거 되는 것을 보여주는 그래프나 증빙자료 <그림 4>흡연실 실내에서의 흡연 시 측정 결과, 타르 등 입자상 물질은 약 5배 수준으로 급격히 증가하는데, (그림참조) 청정장치 가동 후 5분 이내 초기 농도 대비 약 70% 감소한다. <그림 5>약 8평 규모 흡연실(체적 60 m3) 실내의 공기를 15분 기준으로 1회 정도 순환시킬 수 있는 유량으로 설계한 것이다. 흡연시 발생되는 TVOC의 양은 1명 흡연시 약 40 ppb 정도이며, 12명이 동시에 흡연 시 흡연실내의 TVOC 농도는 약 350±50 ppb 정도가 된다. (아래 그림 참조) 4 CMM의 의미는 1분당 청정화장치로 투입되는 공기량(입방미터)
- 56
- 작성자환경복지연구단 정종수, 배귀남 박사 연구팀
- 작성일2015.04.21
- 조회수34729
-
55
외부 유해 기체 차단성을 높인 고강도 복합소재 제조
외부 유해 기체 차단성을 높인 고강도 복합소재 제조 - 그래핀의 기능화를 통해 높은 분산성을 가지는 그래핀 제조 원천기술 개발 - 그래핀을 이용한 고분자 복합소재 상용화 앞당겨 고분자 복합재료는 강도가 높고, 내열성이 우수해, 자동차, 우주 항공 분야 등 다양한 곳에서 사용된다. 이러한 고분자 복합재료는 높은 강도 외에도 외부의 유해한 기체를 차단할 수 있는 성질이 필요한데, 국내 연구진이 산화그래핀을 변형하여 이런 조건을 향상시킨 고분자 복합재료를 제조했다. 전자소자 기판이나 우주선 등에 쓰이는 폴리이미드 수지로 만든 고분자재료보다 강도와 탄성이 향상되었을 뿐 아니라, 외부 기체를 차단성이 240배 높아져 그래핀을 이용한 고분자 복합소재의 상용화를 앞당길 것으로 보인다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 유남호 박사팀은 그래핀을 화학적 방법을 통해 변형시켜 엔지니어링 플라스틱의 하나인 폴리이미드와 화학결합을 유도하고 그래핀을 균일하게 분산 시킬 수 있는 고분자 복합소재 제조 공정을 개발했다. 그래핀으로 고분자 복합재료를 제조하기 위해서는 고분자 수지와 충전재가 필요하다. 충전재로 대량의 그래핀이 필요한데 그래핀간에 서로를 뭉치게 하는 성질인 반데르발스 힘 때문에 그래핀이 기계적으로나 전기적으로 우수한 특성을 가진 재료임에도 불구하고 고분자 복합재료에 사용하는데 제한이 있었다. 연구팀은 순수한 그래핀을 만들기 위해 대량의 흑연에서 산화시킨 산화 그래핀을 화학적 방법을 통하여 다시 그래핀으로 환원시켰다. 기존의 환원제가 환원 과정에서 그래핀 응집이 일어나고, 추가적인 변형이 어려웠던 문제를 해결하기 위해 환원반응을 할 수 있지만 동시에 그래핀 표면에 고분자 수지와의 화학결합을 유도할 수 있는 물질을 도입해 그래핀의 분산성이 향상된 기능화된 그래핀을 제조하였다. 이와 동시에 그래핀 표면을 기능화하여 엔지니어링 플라스틱의 하나인 고성능 고분자 폴리이미드와 결합시켜 그래핀과 폴리아미드가 화학반응을 일으키고 이를 통해 폴리이미드 위에 그래핀이 균일하게 분산된 고분자 복합재료를 만들 수 있었다. o 연구팀은 기능화된 그래핀 입자가 폴리이미드를 구성하고 있는 무수물(dianhydride)과 직접 화학 반응을 할 수 있도록 아미노페닐기(amino phenyl group)가 도입된 그래핀 입자를 용매에 골고루 녹였다. 기능화된 그래핀은 폴리이미드 중합반응을 일으켜 고분자와 그래핀 사이의 공유결합을 유도하여 폴리이미드 수지내에 그래핀이 균일하게 분산 된 고분자 복합소재 제조에 성공했다. 이렇게 개발한 소재는 기존의 폴리이미드 고분자 복합소재가 산소 및 수증기 등의 가스를 효과적으로 차단하지 못해 활용이 어려웠던 데 비해 240배 이상의 가스를 차단하는 성과를 보였을 뿐만 아니라 기계적 강도 또한 2배이상 강화되었다. o 물질을 감싸는 특성을 가지는 복합수지는 보통 산소나 수분을 차단하여 제품의 수명이나 성능을 보호하는 소재로 사용영역은 의약품, 전자제품, 디스플레이 제품 등 다양하다. 또한 첨단 디바이스 재료인 태양전지의 봉지필름, 백시트, 건축용 고진공 단열재, 산업용 포장재 등 광범위하게 활용된다. 그러나 고분자 소재의 경우 산소 및 수분 차폐 특성이 요구수준에 만족하지 못하기 때문에 이를 극복하기 위해 다양한 연구가 시도되고 있다. KIST 유남호 박사는 “고성능, 기계적 플라스틱에 적합한 그래핀의 개발을 통하여 기존 고분자 소재의 낮은 산소 차단성과 기계적 강도를 동시에 향상시킴으로써 디스플레이 소재나 우주항공 및 복합소재 상용화를 앞당길 수 있을 것으로 보인다”고 연구의의를 밝혔다. 이번 연구는 KIST 기관고유 사업에서 지원되었으며, 연구 결과는 미국 화학회에서 발간하는 재료분야의 권위지인 Chemistry of Materials 3월 24일자 게재되었다. * (논문명) “Grafting of Polyimide onto Chemically-Functionalized Graphene Nanosheets for Mechanically-Strong Barrier Membranes” - (제1저자) 한국과학기술연구원 임준 연구원, 여현욱 연구원 - (교신저자) 한국과학기술연구원 유남호 박사 <그림 1> 산화 그래핀의 기능화와 환원반응을 통한 신규 그래핀의 제조공정(a), 기능화된 그래핀을 이용한 폴리이미드와의 중합 및 복합화 제조공정의 모식도(b). <그림 2> 그래핀/고분자 복합소재에서, (a) 기능화된 그래핀 함량에 따른 고분자 복합소재의 기계적 강도(red) 및 탄성(blue). 그래핀이 충전되지 않은 고분자 수지(Pure)에 비해 3 wt% 그래핀이 함유된 복합재의 경우 강도가 2배이상, 탄성이 1.5배 향상되었다. (b) 그래핀의 함량에 따른 복합소재의 산소 투과도. 그래핀이 충전되지 않은 고분자 수지(black)에 비해 5wt% 그래핀이 함유된 복합재(violet)의 경우 산소 차단성이 240배 이상 향상되었다.
- 54
- 작성자복합소재기술연구소 유남호 박사팀
- 작성일2015.04.07
- 조회수19049
-
53
탄소나노소재와 산화아연 양자점을 결합하여 빛을 수소로 바꾸는 소자 기능 획기적으로 개선
탄소나노소재와 산화아연 양자점을 결합하여 빛을 수소로 바꾸는 소자 기능 획기적으로 개선 - 불안정한 산화아연 양자점과 전기적으로 우수한 탄소나노소재를 일체형 핵-껍질 구조로 제작 - 수소에너지 생성을 위한 광전기화학 소자의 소재로 탄소나노소재의 가능성 부각 친환경 에너지인 태양광을 에너지 효율이 높고 전기 에너지로의 전환이 용이한 수소에너지로 전환하는 연구가 전 세계적으로 진행중이다. 태양광을 수소 에너지로 바꾸는 에너지 전환 소자에는 광전기화학소자가 대표적인데, 국내 연구진이 탄소나노소재를 산화아연(ZnO) 양자점 보호막으로 코팅해 기존 소자 효율보다 7배 향상되고, 안정성이 획기적으로 개선된 소자를 개발했다. 한국과학기술연구원(KIST) 전북분원(분원장 김준경) 복합소재기술연구소 소프트혁신소재연구센터 손동익 박사팀은 연세대학교 화학생명공학부의 박종혁 교수팀과 공동 연구로 차세대 탄소나노소재재료인 그래핀 양자점과 풀러렌(C60)을 이용하여 산화아연 양자점을 핵-껍질 구조로 감싸서 보호막을 형성하는 방법을 이용하여 전하 운반 효율을 증대시키면서, 소자의 안정성을 강화한 광전기화학소자를 개발했다. 수소 에너지는 전기 에너지에 비해 단위 질량 및 면적 당 저장할 수 있는 에너지의 양이 크고 전기 에너지로의 변환이 용이한데다, 수소 자동차와 같이 바로 연료로 활용될 수 있는 장점이 있다. 따라서 태양광 에너지를 수소 에너지로 전환하여 사용하기 위한 연구가 진행돼 오고 있다. 현재 광전기화학소자는 아직 매우 낮은 광-수소 에너지 전환 효율로 인하여 경제성 확보에 어려움을 겪고 있으며, 광촉매 소자에 쓰이는 금속 산화물 표면에서 부식이 일어나거나 혹은 다른 부가적 화학반응이 발생해 장기 안정성이 좋지 못해 시장성 확보가 어려운 상태이다. 광전기화학소자에서 산화아연(ZnO)은 태양광을 흡수하여 전자(Electron)와 정공(Hole)을 형성하는 광양극 (photoanode)으로 친환경 소재로 각광받는 재료이다. 그러나, 전해질과의 접촉 시 빛에 의한 부식이 일어나 생성된 정공이 쉽게 유실되거나 표면에서 전자와 정공이 재결합 (recombination) 되는 등 전하 전달 효율이 좋지 않아 소자의 안정성이 떨어지는 단점을 가지고 있다. 연구팀은 산화아연보다 크기가 커 탄소나노소자가 표면에 완전히 코팅이 가능한 산화아연 양자점을 제작했다. 이러한 합성 과정 중에 순수한 산화아연 양자점은 표면에 노출된 불안정한 산소 원자에 의해 쉽게 광부식이 발생함을 발견했다. 이를 해결하기 위해 용액 상태의 그라파이트 산화물, 산화 풀러렌 등을 함께 넣고 섞었다. 그 결과 화학적 반응을 통해 산화아연 양자점을 그래핀 양자점 또는 풀러렌이 균일하게 감싸는 핵-껍질(핵-산화아연양자점, 껍질-그래핀 양자점, 풀러렌 )구조를 가진 양자점을 제작할 수 있었다. 이는 그래핀 양자점과 풀러렌과 같은 탄소나노소재들이 산화아연을 감싸면서 산화아연과 결합할 때 산화아연 표면의 산소 원자와 결합하므로 광부식을 억제할 수 있어 장기 안정성이 매우 큰 폭으로 향상되기 때문이다. 뿐만 아니라, 빛을 흡수한 전하들의 이동 속도가 큰 탄소나노소재에 의해 전하 이동 효율이 대폭 향상되어 소자의 광전기화학적 성능 또한 동시에 크게 개선됨을 확인하였다. 이는 기존 광전기화학소자의 효율보다 7배 이상 개선된 것이다. 연구를 이끈 손동익 박사는 “개발한 핵-껍질 구조의 양자점을 나노에서 마이크로 사이즈로 크게 합성하여 빛을 흡수하는 시간을 증가시키고 수소 전환효율을 높인다면 광전기화학소자를 통한 수소에너지 생산 산업에 크게 기여할 것으로 보인다”고 말했다. 이번 연구는 KIST 기관고유사업에서 지원되었으며, 연구 결과는 나노 에너지(Nano Energy) 저널 2월 14일자로 게재되었다. * (논문명) "Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantum dots" - (공동 제1저자) 성균관대 김정규 연구원 - (공동 제1저자) 한국과학기술연구원 배수강 박사 - (공동 교신저자) 연세대학교 박종혁 교수 - (공동 교신저자) 한국과학기술연구원 손동익 박사 <그림자료> <그림 1> ‘Nano Energy’의 2015년 2월에 개제된 논문의 내용을 담고 있는 개괄적 이미지. 노란색의 산화아연 양자점에서 표면에 존재하는 붉은색의 산소 원자가 탄소나노소재인 그래핀 양자점 혹은 풀러렌과 강한 결합을 하면서 감싸서 핵-껍질 구조가 형성되어 있음을 나타내는 이미지. 양자점은 태양광을 흡수하여 전자와 정공을 형성하고, 표면을 둘러싸는 나노 탄소가 형성된 전자와 정공이 유실되지 않도록 형성에 도움을 주어 전하 이동 효율의 향상에 도움을 주는 역할을 물론이고, 소자의 안정성 향상 측면에도 도움을 준다. <그림 2> 산화아연 양자점을 탄소나노소재가 둘러싼 소재를 이용한 전극의 구조: (A) 탄소나노소재는 산화아연 양자점 표면의 불안정한 산소 원자와 강한 결합을 하여 핵-껍질 구조를 형성한다. (B) 탄소나노소재가 광부식에 의해 정공을 유실하지 않도록 하여 전하의 이동을 효율적으로 이끄는 모식도. 산화아연(Bare ZnO)에서 발생하는 산화과정이 산화아연양자점에서는 X 로 표현되어 발생되지 않는다. <그림 3> 탄소나노소재가 코팅된 산화아연 양자점으로 구성된 광전기화학 소자의 성능: (A) 탄소나노소재 코팅된 산화아연 양자점을 활용한 경우, 소자 성능이 향상됨을 확인할 수 있다. 기존 산화아연(블랙)과 비교해 산화아연 양자점(레드, 블루)의 10배정도(7배이상) 높게 나타남을 확인할 수 있다. (B) 탄소나노소재 코팅에 의한 안정성 증가 확보
- 52
- 작성자소프트혁신소재연구센터 손동익 박사팀
- 작성일2015.04.06
- 조회수19511
-
51
비용매 공정 개발로 그래핀 복합소재 상용화 박차
비용매 공정 개발로 그래핀 복합소재 상용화 박차 - 비용매공정으로도 그래핀 입자의 균일한 분산이 가능해 건조가 필요 없는 경제적인 공정 개발 - 그래핀 상용화를 앞당기는 혁신적 기술 그래핀의 가장 유망한 응용분야 중 하나인 그래핀 기반 고분자 복합소재는 관련 분야에서 향후 가장 큰 시장을 형성할 것으로 기대되는 분야 중 하나다. 그래핀 기반 고분자 복합소재의 상용화에 있어, 그래핀 입자를 균일하게 분산시키기 위한 분산제 및 용매의 건조 공정에서 소요되는 시간과 이 때 발생하는 그래핀 입자의 재응집이 걸림돌로 지목되어 왔다. 국내 연구진이 그래핀 입자를 더 균일하게 용매없이 분산할 수 있는 경제적 공정을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 김성륜 박사팀은 서울대 재료공학부 윤재륜 교수팀과 함께 꿈의 신소재인 그래핀에 용매를 사용하지 않고 균일하게 분산 시킬 수 있는 고분자 복합소재 제조 공정을 개발했다. 그래핀 고분자 복합소재는 가열하는 용융공정으로는 그래핀 입자를 균일하게 분산시키기 어렵다. 그래핀 입자의 균일한 분산을 위해 용액공정을 도입할 경우 비경제적일 뿐만 아니라 용매의 건조를 위한 후공정에서 발생하는 그래핀 입자의 재응집에 필요한 비용과 시간 때문에 상용화에 어려움이 있었다. 그래핀 입자가 균일하게 분산되지 않으면 후에 결함의 주요 원인이 된다. 서로 반응이 가능한 소중합체의 일종인 CBT(Cyclic butylene terephthalate)는 최초 용융 시 액체처럼 잘 흐르다가 열을 가하면 중합되어 고분자가 되는 특징이 있다. 연구팀은 CBT 입자를 그래핀 입자와 섞은 후(Powder mixing) 중합반응을 일으켜 용매를 사용하지 않고 그래핀이 균일하게 분산 된 고분자 복합소재 제조에 성공했다. 뿐만 아니라, 이렇게 제조한 그래핀 복합소재의 단면을 이미지 처리 (Image processing) 한 후, 통계를 산출해 그래핀 입자 간 평균거리 및 표준편차를 구하여 그래핀 입자의 분산 정도를 정량적으로 평가하는 방법 또한 개발했다. 이를 통해, 그 동안 어려움을 겪고 있던 그래핀 복합소재의 정밀한 분산 평가를 위한 분석 평가 방법이 도출뿐 아니라, 연구팀의 공정으로 제작한 그래핀 복합재료가 기존 용매 공정에 비해 훨씬 고르게 분산되었음을 정량적으로 확인할 수 있었다. KIST 김성륜 박사는 “혁신적이고 효율적인 비용매 복합소재 제조공정 개발로 그래핀 고분자 복합소재 상용화를 앞당길 수 있을 것으로 보인다”고 연구의의를 밝혔다. 이번 연구는 KIST 기관고유연구사업, 나노융합 2020사업(미래창조과학부 및 산업통상자원부 공동 지원)에서 지원되었으며, 연구 결과는 사이언티픽 리포트(Scientific Reports) 3월 16일자 게재되었다. * (논문명) "Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization" - (제1저자) 한국과학기술연구원 노예지 연구원 - (교신저자) 한국과학기술연구원 김성륜 박사 - (교신저자) 서울대학교 윤재륜 교수 <그림자료> <그림 1> CBT 입자를 그래핀 입자와 입자 믹싱 (Powder mixing) 한 후 반응 중합시켜 용매를 사용하지 않고 그래핀이 균일하게 분산된 고분자 복합소재를 제조할 수 있는 공정의 모식도. <그림 2> 고분자 복합소재에서 그래핀 입자의 분산성 정량 평가, (a) 그래핀 고분자 복합소재 파단면을 전자현미경으로 관찰한 이미지. (b) 정확한 정량평가를 위해 입자만 남긴 이미지. (c) 통계처리를 통하여 구한 입자간 평균거리 분포.
- 50
- 작성자복합소재기술연구소 김성륜 박사팀
- 작성일2015.03.30
- 조회수16561
-
49
백금보다 100배 싼 황화니켈로 무한에너지 수소 싸게 만든다
백금보다 100배 싼 황화니켈로 무한에너지 수소 싸게 만든다 - KIST, 내구성 높은 고성능, 저가형 수소발생 촉매 개발 성공 - 친환경 수소에너지 보급화 및 상용화에 기여 국내 연구진이 미래 대체에너지인 수소 생산을 위해 쓰이는 고가의 백금 촉매를 대체 할 수 있는 황화니켈 촉매 원천기술을 개발했다. 백금 촉매는 높은 가격으로 인해 수소 대량 생산을 가로막는 가장 큰 걸림돌이었다. 황화니켈은 백금 대비 100배 이상 가격이 낮아 수소 생산의 상용화에 청신호가 켜졌다. 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 연료전지연구센터 유성종 박사는 서울대 화학생물공학부 성영은 교수와 카이스트 생명화학공학과 이현주 교수팀과의 공동연구를 통해 나노 크기 구조의 단결정 황화니켈을 사용하여 수소 발생 시스템에서 백금을 대체함으로서 촉매 가격을 획기적으로 줄이면서도 높은 성능과 내구성을 구현해내는데 성공했다고 밝혔다. 수소는 친환경에너지로 세계 각국에서 연구 개발을 활발히 진행하고 있다. 그 중 수소 스테이션 등 수소를 바로 발생시켜 공급하는 방법에 주목하고 있지만, 물의 전기분해법은 에너지 이용 효율이 낮고, 전극을 소형화해야 하는 등 해결과제가 남아있다. 또한 수소 발생용 전극 재료로는 백금이 가장 우수하지만 비용이 높기 때문에 백금을 대체하는 대체 재료의 개발이 요구되고 있다. KIST 유성종 박사팀은 기존 희소 금속인 백금 기반의 촉매보다 뛰어난 저가의 니켈기반 화합물에 주목했고 계산과학에 기반한 설계를 통해서 수많은 니켈 화합물 중 황화니켈이 수소발생을 위한 촉매 중 활성도가 우수하다는 것을 밝혔다. 연구팀은 단결정 나노 구조의 황화니켈 화합물을 합성하는 데 성공하였고 합성된 황화니켈 나노 입자의 전기화학적 활성이 극대화됨을 확인해 촉매 성능의 우수성을 규명하였다. 물의 전기분해(water electrolysis)를 통해 수소와 산소를 생성하는 반응은 수증기 개질(steam reforming)에 비해 대용량의 고순도 수소 제조가 가능하기 때문에 전 세계적으로 많은 연구가 진행되고 있다. 그 중 수소 발생 반응 (hydrogen evolution reaction)은 알칼라인 전해질에서 상대적으로 느린 반응 속도로 말미암아 물 분해에 있어서 효율성이 낮아 기술적으로 큰 진입 장벽으로 여겨지고 있다. 이를 해소하기 위해 촉매를 사용하는데, 촉매에 사용되는 값비싼 백금을 대체하기 위해, 가격이 낮으면서도, 낮은 과전압과 높은 안정성을 갖는 원료의 개발이 필수적이다. 연구팀은 니켈, 코발트 등의 3d 전이금속 기반의 산화물의 경우, 수소 발생 반응의 산화 표준 전위 (0 V vs. RHE) 기준으로 낮은 과전압에서 높은 반응성을 보이며 기존 물질에 비하여 안정성이 뛰어난 것에 착안하여 단결정 황화니켈 나노입자 기반의 촉매를 개발했다. 연구팀이 개발한 단결정 황화니켈 나노 입자들은 표면에서의 니켈 금속과 황 사이의 강한 전자 상호 작용에 의해 니켈금속의 전자 구조를 변형 시켜 수소 발생 반응에 유리한 촉매 활성점을 극대화시켰다. 이는 유무기 복합체 사이의 전하 전달이 매우 중요한 역할을 한다는 것을 세계 최초로 밝힌 것이다. 이렇게 개발된 황화니켈 화합물 나노 입자는 전기화학적 활성을 극대화 할 수 있어 그 동안 물 분해 반응에 많이 사용되던 순수 니켈 촉매의 활성보다 2배를 넘어서는 성능을 보여주었으며, 백금과 동등한 수준이었다. 황화니켈 화합물은 지구상에 풍부하게 존재하는 니켈을 기반으로 하기때문에, 가격이 저렴한 것이 장점이다. 니켈 금속은 가격이 ㎏당 14달러 수준에 불과하고 단결정 황화니켈 화합물 합성조건 역시 1 step 공정이기 때문에 제조비용이 백금을 사용한 기존 공정에 비해 100배 이상 저렴해 촉매로 개발했을 때 저비용, 고효율 촉매라 할 수 있다. 뿐만 아니라, 개발한 촉매는 전기화학적 촉매 반응에 중요한 역할을 하는 분자친화도 (molecular affinity)를 조절할 수 있어 연료전지 및 다른 전기화학 반응에도 적용할 수 있는 구조적 장점을 가질 것으로 기대된다. KIST 유성종 박사는 “미래 청정에너지에 대한 관심이 높아지는 가운데 재생에너지를 통해 물에서 수소 같은 화학에너지로 변환하는 기술의 상용화가 무엇보다 중요하다”라며, “이번 연구는 수소에너지 상용화를 한 발 앞당겼다는데 큰 의미가 있다”고 말했다. 본 연구는 촉매합성과 설계부문, 분석으로 나누어 진행되었으며 촉매합성연구 및 분석은 KIST 연료전지연구센터와 카이스트에서, 설계연구는 충북대와 서울대에서 주도적으로 수행되었다. 본 연구는 미래창조과학부의 글로벌프론티어사업과 한국연구재단 중견연구자지원사업을 통해 수행되었으며, 연구결과는 재료과학 분야의 국제 저명 학술지인 나노스케일 (Nanoscale)에 3월 28(월)일자 표지논문으로 게재될 예정이다. * (논문명) Structure dependent active sites of NixSy as electrocatalysts for hydrogen evolution reaction - (공동 제1저자) (서울대학교) 정동영 박사, (연세대학교) 한정우 박사과정 - (공동 교신저자) 한국과학기술연구원 유성종 박사, 카이스트 이현주 교수, 서울대학교 성영은 교수 <그림1> 'Nanoscale'의 2015년 3월 28일자 권두 표지논문이미지, 원자단위에서 본 단결정 황화니켈 구조의 모습, 이러한 단결정 황화니켈 나노화합물은 백금을 상회하는 수소 발생 능력을 가진 물질이다. <그림 2> (a?d) NiS 나노입자와 (e?h) Ni3S2 나노입자의 전자현미경 이미지. 단결정 황화니켈 화합물 나노입자 합성조건이 1 step 공정이기 때문에 제조비용이 매우 저렴해 저비용 고효율 촉매라 할 수 있다.
- 48
- 작성자연료전지연구센터 유성종 박사, 서울대 성영은 교수, 카이스트 이현주 교수팀
- 작성일2015.03.30
- 조회수30772
-
47
극치환된 구조의 양자점 LED 제작, 차세대 발광 디스플레이 개발 박차
극치환된 구조의 양자점 LED 제작, 차세대 발광 디스플레이 개발 박차 - 고분자 물질과 산화아연을 이용하여 극치환된 구조의 양자점 LED 개발 - 소자의 발광 효율을 극대화 시키는 특성 확보 반도체 산업과 더불어 국내 주요 양대 산업의 하나인 디스플레이(Display)는 영상 전달 매체로서 그 중요성이 점차 강조되고 있다. 디스플레이가 더 발전하기 위해서는 저소비전력화, 경량화, 고화질화, 유연성 등의 요건들이 필요하다. 이를 위해 차세대 디스플레이 및 면발광 조명 소재로 양자점 발광 소자가 연구되고 있다. 국내 연구진이 소재의 양 극을 치환한 구조로 제작한 LED 디스플레이는 소자의 구동이 안정적이며 발광 효율이 3배이상 개선되는 효과를 보였다. 고휘도, 저소비전력의 디스플레이 및 조명 개발이 한층 가까워질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 황도경 박사/미래융합기술연구본부장실 최원국 박사 연구팀은 고분자 물질(PEIE)과 산화아연(ZnO) 나노입자 이중층을 전자 주입층/수송층으로 사용하여 소자의 안정성과 발광 효율을 극대화할 수 있는 극치환된 구조의 양자점 LED 개발에 성공하였다. 고분자 물질인 PEIE은 값이 싸고, 친환경적인 물질로, 금속, 전도성 유기물 등과 만나게 되면, 각 물질들이 지니고 있는 일함수를 낮춰주는 표면 개질체로서의 기능을 할 수 있다. 산화주석인듐(ITO)은 일함수가 높기 때문에(4.8eV) 주로 양(Anode)극으로 사용이 많이 되었으나, PEIE(표면 개질체)를 코팅 함으로서 일함수를 낮춰주어(3.08eV) 음(Cathode)극으로 극을 치환 할 수 있다. 이렇게 극이 치환된 구조는 소자의 안정성을 향상시킬 수 있다. 그러나 고분자물질(PEIE)만으로 주입층/수송층을 만드는 경우 고분자물질이 주입층의 역할만을 수행하여 외부 주입된 정공을 차단하며 전자를 효과적으로 수송시켜주는 전자 수송층를 역할을 하지 못하는 문제가 발생한다. 연구진는 이를 개선하기 위해 PEIE 고분자 표면 개질체와 효과적인 전자수송층의 역할을 하는 산화아연(ZnO) 나노 입자를 이중 층으로 형성하여 나노 이중 층이 전자 주입층/수송층으로 사용하여 극치환 구조의 양자점 LED 제작에 성공하였다. 산화아연/고분자물질(ZnO/PEIE) 이중층의 경우 PEIE 단일층보다 양자점내에 정공과 전자의 재결합을 보다 효과적으로 이루게 하여 LED 소자의 발광 휘도가 3배 이상 향상된 결과를 확인하였다. 황도경, 최원국 박사는 “PEIE와 ZnO은 값싸고 친환경적인 물질일 뿐만 아니라 지구상에 풍부한 자원이라 대량 생산에 적합하며, 이를 통하여 제작된 극치환된 구조의 소자는 구동이 안정적인 장점이 있다. 또한 이런 이유로 디스플레이의 수명 연장에 효과적이며, LED 디스플레이와 구동 원리가 유사한 태양 전지 또는 광센서 소자에도 적용 가능 할 것” 이라고 밝혔다. 본 연구는 KIST의 기관고유 미래원천연구사업 및 산업통상자원부 제조기반산업핵심기술개발사업 지원으로 수행되었으며, 3월 10일(화)자 Scientific Reports에 온라인 게재되었다. (논문명) “Inverted Quantum Dot Light Emitting Diodes using Polyethyleniminee ethoxylated modified ZnO” (DOI: 10.1038/srep08968) - (제1저자) 한국과학기술연구원 김홍희 박사과정 학생 연구원 - (공동교신저자) 한국과학기술연구원 황도경 박사 - (공동교신저자) 한국과학기술연구원 최원국 박사 <그림1> 전분자 물질(PEIE)와 산화아연(ZnO)를 이용하여 제작된 극치환 구조의 양자점 발광 다이오드. (a) 극치환된 구조의 양자점 LED 모식도. (b) 양자점 LED 단면의 광학 현미경 사진(왼쪽), 그리고 양자점(CdSe/ZnS)과 산화아연(ZnO)의 원자 격자 구조(오른쪽). (c) 고분자 물질(PEIE)와 산화아연(ZnO) 간의 에너지 준위 다이어그램. (d) 제작된 발광다이오드의 전계 발광 스펙트럼 및 발광 사진(적색, 녹색, 청색, 백색 모두 구현이 가능함을 보여준다)
- 46
- 작성자광전소재연구단 황도경 박사, 미래융합기술연구본부 최원국 박사 연구팀
- 작성일2015.03.25
- 조회수28387