보도자료
-
595
귀한 ‘희토류 금속’의 고효율 회수 소재 기술개발, 디지털 인프라 자원순환↑
귀한 ‘희토류 금속’의 고효율 회수 소재 기술개발, 디지털 인프라 자원순환↑ - 폐 영구자석으로부터 희토류 금속의 회수를 통한 해외 의존도 저감 기대 - 성능·생산성·경제성·적용성 향상된 섬유상 흡착 소재 개발, 산업안정성 향상 우리나라는 리튬, 니켈, 희토류 등 핵심광물의 95%를 수입에 의존하고 있다. 특히 희토류는 소량 첨가만으로도 물질을 화학·전기·자성·발광적 특성을 갖게 만드는 특징을 갖고 있어 최근 친환경 자동차 및 신재생에너지산업분야의 핵심소재로 그 사용량이 크게 증가하고 있다. 희귀 금속의 주요 생산국인 중국이 자원 무기화 전략을 통해 공급을 조절하고 있어, 국내 산업에 큰 부담으로 작용하고 있다. 한국과학기술연구원(KIST, 원장 오상록) 물자원순환연구단 최재우 박사 연구팀이 최근 네오디뮴(Nd)과 디스프로슘(Dy) 등 희토류 금속을 고효율로 회수할 수 있는 섬유상 회수 소재를 개발했다고 발표했다. 이 신소재는 주로 전기차, 하이브리드차의 구동 모터, 풍력 발전, 로봇 및 항공우주 산업에서 필수적인 부품으로 사용되는 3세대 영구자석에 들어가는 희토류 금속(네오디뮴-철-붕소(Nd-Fe-B))을 회수하여 순환하는 소재로 희토류 공급과 산업적 안정성 문제를 해결하는 데 기여할 것으로 기대된다. KIST 연구진은 효율적으로 희토류 금속을 회수하기 위해 금속-유기 구조체와 고분자 복합 섬유로 구성된 나노 구조 섬유 소재를 개발했다. 국내에서 이미 널리 활용되는 아크릴 섬유를 기반으로 제작되어 경제성과 생산성 측면에서도 우수하다. 연구진은 개발된 소재가 폐액 내에서 희토류를 쉽게 흡착하면서도 회수가 용이해 산업적 활용도가 아주 클 것으로 전망했다. 개발된 섬유 소재는 네오디뮴에 대해 468.60 mg/g, 디스프로슘에 대해 435.13 mg/g의 흡착 용량을 보여 세계 최고 수준의 성능을 기록했다. 이는 기존 흡착 소재보다 매우 높은 수치이며, 간단한 형태의 반응기에 적용할 수 있기에 회수 과정의 에너지 효율 또한 크게 개선될 수 있다. 연구팀은 이 소재가 폐 영구자석뿐 아니라 광산 배수 등 희토류 금속이 포함된 다양한 산업 폐수에서도 효과적으로 희토류를 회수할 수 있을 것으로 기대하고 있다. 특히, 표면 개질이 용이해 다양한 산업 폐수에 대한 적용 가능성이 높아, 희귀 금속 자원 확보를 위한 기술적 대안으로 자리잡을 전망이다. KIST 최재우 박사는 “이번에 개발한 고효율 희토류 금속 회수 소재는 기존의 입상 흡착 소재를 대체할 수 있는 기술로, 성능, 생산성, 경제성, 적용성 측면에서 뛰어난 결과를 보여 디지털 인프라 폐기물 광물 추출 생태계를 활성화 시키고, 자원순환을 통한 산업적 적용 가능성이 매우 크다”고 연구의 의의를 설명했다. 또한 정영균 박사는 “향후 산업 폐수에서 희토류를 포함한 다양한 유용 자원을 선택적으로 회수할 수 있는 기술로 확장하여 탄소 중립과 희토류 관련 전 후방 산업에 기여할 수 있을 것”이라고 강조했다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업, 소재혁신선도사업(2020M3H4A3106366) 및 세종과학펠로우십(RS-2023-00209565)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Fiber Materials」 최신호에 게재됐다. * (논문명) Synergistic Effect of Core/Shell-Structured Composite Fibers: Efficient Recovery of Rare-Earth Elements from Spent NdFeB Permanent magnets [그림 1] 섬유상 희토류 금속 회수 소재의 합성 고분자 섬유와 금속-유기물 구조 나노 물질의 복합 구조로 구성된 섬유상 소재의 구조와 표면 분석 결과를 나타낸다. (a) 소재 형성 과정을 나타낸 도식표. (b) 고분자 섬유의 표면 작용기 개질 과정을 나타내는 샘플의 FT-IR 분석 결과. (c) 사용한 용매에 따른 나노 물질의 담지 성능. (d) 담지 용매의 종류에 따른 섬유의 FT-IR 결과. (e) 섬유 소재를 준비하는 단계에서 각 샘플들의 XRD 패턴. [그림 2] 섬유상 소재의 희토류 금속 회수 성능 (a) Nd3+및 (b) Dy3+이온에 대한 섬유의 희토류 회수 성능에 미치는 pH의 영향. 각각의 희토류 금속 이온에 대한 초기 농도와 흡착제 용량은 1000 mg/L 및 0.5 g/L로, 반응 시간은 24시간 동안 별도의 pH 조절 없이 수행. 저농도의 (c) Nd3+ 및 (d) Dy3+이온에 대한 소재의 회수 효율. (e) Nd3+ 및 (f) Dy3+이온에 대한 소재의 등온 평형 곡선. 접촉 시간은 24시간이며 pH조절 없이 수행. (g) Nd3+및 (h) Dy3+이온에 대한 CSCF의 회수 속도 곡선. 초기 농도는 1000 mg/L이며 pH 조절 없이 수행. (i) 흡착 소재의 Nd3+와 Dy3+의 최대 회수 용량(qm)과 (j) 회수 속도 상수 k를 최상위 논문에 보고된 흡착제들과 비교한 결과. [그림 3] 희토류 금속 회수 섬유의 우수한 산업 적용성 폐기된 영구자석으로부터의 희토류 회수 공정에 대한 회수 소재의 실용적 응용 가능성. (a) 초기 농도 비율이 65(Fe):25(Nd):10(Dy)인 경우, 각 이온의 pH에 따른 구성 성분도 그래프. (b) 세 가지 금속 이온에 대한 섬유 소재의 흡착 성능에 대한 분배계수 (Kd), 흡착 소재를 사용하여 선택적인 희토류 회수를 예측. (c) 흡착 소재로 채워진 흡착 반응조는 동일한 무게의 입상 분말로 채워진 모듈보다 현저히 낮은 압력 강하(빠른 물질 전달 속도). 내부 이미지는 각 소재로 채워진 반응조를 나타냄. (d) 재생 전 소재의 최초 최대 흡착량(qm)과 반복 재생 이후 최대 흡착량(qm,r)의 비율을 나타낸다. 3번의 재생까지 거의 100%의 소재 재생 성능을 유지함. (e) 4회 재생 이후 NPZIF-8의 결정 구조가 붕괴되는 현상을 나타내는 재생 이후 NPZIF-8의 XRD패턴. (f) 5번의 재생 후 CSCF흡착제 표면의 NPZIF-8 나노입자의 전자현미경 이미지. (스케일바: 1 μm)
- 594
- 작성자물자원순환연구단
- 작성일2024.11.19
- 조회수7425
-
593
초박막형 무선 웨어러블 센서 기술로 건강 모니터링의 새로운 장 열리다
초박막형 무선 웨어러블 센서 기술로 건강 모니터링의 새로운 장 열리다 - 고가의 측정 장비 없이 빛만으로 바이오마커 농도 정량화 성공 - 바이오마커 모니터링을 위한 차세대 초박막형 무선 웨어러블 센서 기술 이용자의 건강 모니터링을 위한 웨어러블 디바이스는 우리 몸에서 데이터를 수집해 전송하는 것이 중요하고, 이를 위한 무선 통신 시스템이 필요하다. 하지만 기존의 무선 통신 시스템은 mm단위의 두꺼운 모듈 칩으로 이루어져 있어 사용자의 편의성 개선을 위해 두께를 극한으로 줄인 초박막형 (두께 마이크로미터 수준, 머리카락 두께의 10분의 1) 기기 구현이 어려웠다. 한국과학기술연구원(KIST, 원장 오상록) 센서시스템연구센터 이원령 박사, 양자기술연구단 한재훈 박사, 생체재료연구센터 전호정 박사(센터장) 공동연구팀은 초박형 유기·무기 통합 장치를 이용하여 초박막형(두께 : 4마이크로미터, 무게 : 1mg 이하) 기판 상에 인간의 건강 상태와 관련된 다양한 바이오마커를 빛의 세기만으로 모니터링할 수 있는 기술을 구현 및 개발했다고 밝혔다. 연구팀은 기존의 두껍고 딱딱한 무기 집적 회로 칩 기반의 무선 통신 시스템이 가진 착용성 및 유연성의 한계를 극복하고자, 두께 4 마이크로미터의 초박막 기판 위에 유기 트랜지스터와 근적외선 무기 마이크로 발광 다이오드 (μLED)를 통합한 시스템을 개발하였다. 이 시스템은 바이오마커의 농도에 따라 변하는 트랜지스터의 전류가 μLED의 밝기를 조절하여 포도당, 젖산, pH와 같은 바이오마커를 빛의 세기로 모니터링 할 수 있다. 연구팀은 제작된 유기-무기 통합 장치를 신축성 배터리 회로와 결합하여 땀 속에 존재하는 포도당을 모니터링함으로써 웨어러블 진단기기로서의 유용성을 검증했다. 또한, 바이오마커의 농도를 고가의 측정 장비 없이 μLED를 촬영한 근적외선 이미지만을 분석하여 정량적으로 분석하는 데 성공했다. 이번에 개발된 디바이스는 빛의 세기만으로 생화학 신호를 증폭하고 전송하는 새로운 방법을 제시하여, 웨어러블 초박막형 센서 기술의 발전에 기여할 수 있다. 또한, 단순한 회로 구조와 낮은 전력으로 작동하는 장점 덕분에 다양한 회로 응용 분야에서 활용 가능성을 제시한다. KIST 이원령 박사는 “새로운 무선 모니터링 시스템의 초박막형 생화학센서 디바이스 구현을 통해 환자들에게 디바이스의 착용 위화감이 없이 정밀한 건강 모니터링을 장기간 제공할 수 있고, 당뇨병 등 대사 질환 환자들의 삶의 질을 향상시키는데 기여할 수 있다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업, 한국연구재단 나노소재기술개발사업 (2021M3H4A1A04092879), 바이오의료기술개발사업 (2022M3E5E9016506), STEAM연구사업 (RS-2023-00302145), 중견연구자지원사업 (2021R1A2B5B03001691), 정보통신기획평가원 전파산업핵심기술개발사업 (2022-0-00208)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Nature Electronics」 (IF 33.4, JCR 분야 0.3%)에 최신 호에 게재됐다. * (논문명) An ultrathin organic-inorganic integrated device for optical biomarker monitoring [그림 1] 무선 광학 모니터링 시스템의 개략도 (가) 딱딱한 집적 회로 칩들과 PCB 기판이 필요한 기존의 무선 통신 시스템의 모식도. (나) 초박막 기판 위에 제작된 무선 광학 통신 시스템의 모식도. (다) 근적외선 μLED의 현미경 사진. (스케일바: 200 μm) (라) OECT 의 현미경 사진. (스케일바: 500 μm) (마) 압축된 상태의 통합 장치의 사진. (바) 통합 장치의 작동. μLED의 조도는 바이오마커의 농도에 따라 변함. [그림 2] 무선 광학 모니터링 시스템의 바이오마커 분석 (가) 팔 모형 위에 부착된 무선 광학 모니터링 시스템의 근적외선 사진. (스케일바: 1 cm) (나) 저농도의 바이오마커에서 작동하는 장치의 확대된 근적외선 사진. (스케일바: 500 μm) (다) 고농도의 바이오마커에서 작동하는 장치의 확대된 근적외선 사진. (스케일바: 500 μm) (라) 바이오마커의 농도에 따른 근적외선 이미지의 회색값. (마) 바이오마커의 농도에 따른 근적외선 이미지의 정규화된 반응. (바) 저농도와 고농도의 바이오마커 사이의 회색값과 반치폭의 비교. [그림 3] 웨어러블 땀 패치 (가) 웨어러블 패치의 개략도. (나) 피시험자의 팔에 붙어있는 웨어러블 패치의 사진. (스케일바: 3cm) (다) 식사 전후에 웨어러블 패치, 포도당 측정 키트, 상용 혈당 측정기로 측정한 포도당 농도의 비교. (N=5, 오차 막대는 표준 편차를 의미함)
- 592
- 작성자센서시스템연구센터
- 작성일2024.11.13
- 조회수7128
-
591
나무와 풀로 만든 항공유, 항공 산업 탄소 감축 이끈다.
나무와 풀로 만든 항공유, 항공 산업 탄소 감축 이끈다. - 식물 자원을 활용한 지속가능 항공유 개발 및 장시간 연속 운전 기술 확보 식물 원료 항공유의 상업화 연구를 통해 항공산업의 친환경 전환에 기여 2027년 항공 분야 온실가스 의무 감축 시행에 따라 항공업계에서는 폐식용유, 팜유 등으로부터 얻어지는 지속가능 항공유(SAF, Sustainable Aviation Fuel) 도입을 적극적으로 검토하고 있다. 그러나 기존 지속가능 항공유는 식량 자원으로부터 유래된 항공연료로, 석유 항공유의 일부 성분만 대체할 수 있어 이를 항공기에 실제 사용하기 위해서는 석유와 혼합해야 하는 한계가 있다. 또한, 원료 확보가 어려워 2023년 지속가능 항공유 생산량이 전체 항공유 생산량의 0.2%에 불과하다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 하정명 박사, 유천재 박사 연구팀은 목재 등 식물 원료를 사용해 석유 항공유와 가장 유사한 성분을 지니는 차세대 지속가능 항공유를 개발했다고 밝혔다. 차세대 지속가능 항공유는 식물 원료를 포함한 다양한 원료와 기술로 생산되는 항공유로, 식량 자원 중심의 기존 지속가능 항공유의 한계를 극복하기 위한 대안으로 떠올라 활발히 연구되고 있다. 연구팀은 나무와 풀과 같은 비식용 식물 자원을 분해해 얻은 오일을 기반으로 탈산소 및 중합 반응을 통해 고에너지 성분이 포함된 지속가능 항공유를 생산하는 데 성공했다. 석유 항공유 성분 중 50%를 차지하는 파라핀만을 포함하는 기존 지속가능 항공유와는 달리 나프텐, 방향족 등의 대부분의 고에너지 성분이 포함돼 있는 것을 확인했다. 또한, 연구팀은 차세대 지속가능 항공유 생산공정을 100시간 이상 연속 운전을 통해 상업화로의 연계 가능성을 높였다. 이는 항공유에 필요한 높은 열량의 고에너지 연료 성분 생산 기술을 단순히 실험실에서 확인하는 것이 아니라 실제 산업 현장에서 대량 생산이 가능한 기술적 기반을 마련한 것이다. 이번 연구는 항공산업이 온실가스 감축 규제에 효과적으로 대응할 수 있는 가능성을 열었다. 특히, 넓은 경작지가 필요한 식용유 등 식량 자원 기반의 기존 지속가능 항공유와 달리 비식용 식물 원료 기반 항공유는 폐가구, 농업‧임업 폐기물 등에서 원료를 수월하게 확보할 수 있어 가격경쟁력까지 갖추게 될 전망이다. 연구팀은 비식용 식물 원료 항공유의 상업화를 위해 현재 확보된 연속 운전 기술을 파일럿 규모에서 실증하고 상용 공정을 위한 대규모 스케일업 연구를 지속할 예정이다. KIST 하정명 박사는 “지속가능 항공유는 일반 석유 항공유 대비 탄소배출량을 80%까지 줄일 수 있다”라며 “이번 기술은 나무나 풀 같은 비식량 자원도 항공유 생산에 활용할 수 있어 기존 식용 원료에 집중됐던 연료 자원의 활용 범위를 넓혔다. 향후 차세대 지속가능 항공유의 상용 공정 기술을 빠르게 확보해 글로벌 경쟁력을 선도하겠다”라고 말했다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(NRF-2020M1A2A2079798), 환경부(장관 김완섭) 플라즈마 활용 폐유기물 고부가가치 기초원료화 사업(2022003650001)으로 수행됐다. 이번 연구 성과는 국제학술지 「Energy Conversion and Management」 (IF 9.8, JCR 분야 1.5%)에 게재됐다. * 논문명 : Production of high-carbon-number naphthenes for bio-aviation fuel [그림 1] 나무, 풀로부터 차세대 지속가능 바이오항공유 생산 기존의 지속가능 바이오항공유가 석유 항공유의 일부 성분만을 생산할 수 있는데 비해, 본 연구에서 생산되는 바이오항공유는 석유 항공유 전성분을 생산하는데 기여할 수 있다. [그림 2] 나무, 풀 등으로부터 생산된 바이오항공유 추출 과정 다양한 분해 반응으로 목재, 풀, 폐기물등으로부터 분해 오일을 얻고 이로부터 촉매 반응을 통해 항공유로 적합한 나프텐 등을 포함하는 차세대 지속가능 항공유를 생산함. 이는 파라핀을 포함하는 기존 지속가능 항공유와 혼합하면 석유 항공유를 완전히 대체할 수 있음. [그림 3] 나무, 풀 등으로부터 생산된 바이오항공유 반응 공정 운전후 회수된 바이오항공유
- 590
- 작성자청정에너지연구센터
- 작성일2024.11.12
- 조회수6936
-
589
“과학기술+디자인” KIST-홍익대, ‘AI·로봇’ R&D 맞손
한국과학기술연구원(KIST)과 홍익대학교는 과학기술에 필요한 디자인 요소 강화를 통한 공공기술 개발 협력을 위해 양해각서(MOU)를 6일 체결했다. 이번 양해각서의 주요 내용은 ▷인공지능, 로봇 기술 개발 및 스마트팜 생산기술 개발 연구협력 ▷국가연구개발사업 상호 협력 및 공동연구 추진 ▷공동연구 육성을 위한 상호 기술·인력교류 ▷공동세미나 또는 심포지엄, 기타 연구발표회 개최 등이다. 특히 KIST AI‧로봇연구소와 홍익대 스마트모빌리티연구소는 실제 연구부서 간 업무협약을 동시에 체결하고 KIST는 로봇 및 AI 기술 개발, 홍익대는 로봇 디자인 및 UI, UX 설계 등 강점 분야에서 본격적인 협력을 진행하게 되었다. 오상록 KIST 원장은 “KIST의 연구자들이 기술적인 측면에 집중하고 홍익대의 전문가들이 서비스 디자인에 있어 협력하면 큰 시너지 효과가 있을 것이며, KIST의 임무중심 연구소 중 하나인 AI·로봇연구소와 홍익대 스마트모빌리티연구소가 공공서비스 로봇 연구에서 활발한 협력을 통해 국민이 체감할 수 있는 좋은 성과를 창출할 것”이라고 밝혔다. 박상주 홍익대 총장은 “과학기술에서도 디자인 요소는 기능과 사용성을 높이고, 사용자의 경험을 개선하며, 궁극적으로 제품이나 기술이 성공적으로 채택되는 데 중요한 역할을 한다”면서 “이번 협약 체결을 통해 양 기관이 더 많은 분야에서 협력해 양 기관의 발전과 사회 발전에 기여하길 희망한다”고 강조했다. 관련 : https://biz.heraldcorp.com/article/3848426
- 588
- 작성자연구지원실
- 작성일2024.11.06
- 조회수993
-
587
극한 환경의 유해 물질 감지하는 새로운 고분자 나노소재 개발
극한 환경의 유해 물질 감지하는 새로운 고분자 나노소재 개발 KIST-예일대 공동연구팀, 이온-전자 혼합 전도체 기반의 새로운 나노 소재 개발 고온다습 환경에서 활용 가능한 친환경 고내구성 센서로 다양한 응용 기대 고분자는 그 유연성과 경량성으로 인해 웨어러블 전자기기와 같은 분야에서 각광받아 왔으나, 낮은 전기적 전도성이 주요 단점으로 작용해왔다. 이에 따라 전도성을 향상시키기 위한 다양한 연구가 진행되어 왔지만, 여전히 유해한 용매를 사용해야 한다는 문제나, 극한 환경에서 성능 저하가 발생하는 등의 기술적 한계가 있었다. 한국과학기술연구원(KIST, 원장 오상록)은 KIST 전자재료연구센터 장지수 박사와 미국 예일대학교의 Mingjiang Zhong 교수팀과의 공동연구를 통해 이온-전자 혼합 전도체 기반 고분자 합성법을 개발했다고 발표했다. 이번 연구는 기존 고분자 전도체가 가진 한계를 극복하며, 차세대 고성능 화학 센서 개발에 기여할 수 있는 혁신적인 기술로 주목받고 있다. 연구팀은 이러한 문제를 해결하기 위해 이온성 작용기(pendant)그룹을 고분자 구조에 도입하여, 독성 용매가 아닌 친환경 용매에서도 쉽게 용해될 수 있는 공액 고분자를 합성했다. 특히 이 고분자는 친환경적인 공정에서 높은 가스 감지 성능을 나타내며, 고온다습한 환경에서도 안정적인 성능을 유지할 수 있는 특성을 가진다. 이러한 기술적 진보는 웨어러블 기기, 휴대용 전자기기, 나아가 극한 환경에서도 신뢰성 있게 작동할 수 있는 다양한 전자 장치에 적용될 가능성을 열었다. 이번 연구의 중심에는 친환경 용매(2-methylanisole)에서 용해 가능한 이온화 기반 공액 고분자 개발이 핵심이다. 기존 전도성 고분자는 주로 독성 용매를 사용해야 용해가 가능했으나, 이번에 개발된 고분자는 이온 종과 전자적 전하 운반체의 결합을 통해 전기적 전도성을 크게 향상시켰다. 연구팀은 고분자 내 음이온(TFSI-)과 양이온(IM+)을 도입해 전하 운반체의 밀도와 이동도를 증가시킴으로써, 전도성 및 안정성을 극대화했다. 연구진이 개발한 n타입 기반의 전도성 고분자인 ‘N-PBTBDTT’는 질소 이산화물(NO2)과 같은 유해 가스를 감지하는 데 있어서 매우 높은 민감도를 보였다. 질소 이산화물(NO2) 감지에 대한 민감도는 189%에 달하며, 매우 낮은 농도인 2 ppb에서도 높은 검출 능력을 발휘했다. 이는 기존 센서 기술을 뛰어넘는 수준의 성능이며, 이 고분자는 80%의 높은 습도와 200°C에 이르는 고온 환경에서도 뛰어난 내구성을 보였다. 이를 통해 다양한 극한 환경에서도 안정적인 가스 감지가 가능하다는 점에서 웨어러블 기기나 산업용 센서에 폭넓게 응용될 수 있을 것으로 기대된다. KIST 장지수 박사는 “이번 연구에서 개발된 센서는 단순한 화학 센서를 넘어 다양한 응용 분야에서 혁신적인 변화를 가져올 수 있다”고 설명했다. 제1저자로 참여한 이준우 교수와 신준철 박사는 “특히 화재 현장에서 유해 가스 감지가 필요한 소방관, 전시 상황에서 화학 무기 노출된 군인 등 극한 환경에서 활동하는 종사자들에게 생명을 지킬 수 있는 소재로 활용할 수 있다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST의 주요사업으로 수행되었으며, 연구 결과는 에너지 재료 분야의 권위지인 「Advanced Functional Materials」 (IF: 18.5, JCR 분야 상위 5% 이내)에 게재*됐다. * (논문명) Covalently Merging Ionic Liquids and Conjugated Polymers: A Molecular Design Strategy for Green Solvent-Processable Mixed Ion-Electron Conductors Toward High-Performing Chemical Sensors [그림 1] KIST 연구진이 개발한 극한 환경에서 안정적인 가스 감지 가능한 소재 활용 [그림 2] KIST 연구진이 개발한 극한 환경에서 질소 이산화물 (NO2)을 선택적으로 감지하는 센서 성능
- 586
- 작성자전자재료연구센터
- 작성일2024.11.06
- 조회수7149
-
585
AI에 대한 도전장, 광자 큐디트로 오류정정 기술 없이 더 정확한 양자컴퓨팅 구현
AI에 대한 도전장, 광자 큐디트로 오류정정 기술 없이 더 정확한 양자컴퓨팅 구현 - 광자 큐디트를 이용한 분자 구조 수준의 양자 시뮬레이션 구현 기존 해외 연구보다 적은 자원으로 더 정확한 양자화학 계산 수행 얼마 전 발표된 노벨화학상은 AI로 단백질 구조를 예측한 새로운 설계를 함으로써 신약개발이나 새로운 물질 개발이 가능하도록 한 워싱턴대 데이비드 베이커 교수, 구글 딥마인드 허샤비스 CEO, 존 점퍼 수석연구원 3명에게 돌아갔다. AI와 데이터가 과학혁명을 주도하는 시대에 신약과 새로운 물질 개발에 또 다른 게임체인저로 양자컴퓨팅 기술이 크게 부상하고 있다. 한국과학기술연구원(KIST, 원장 오상록) 양자기술연구단 임향택 박사 연구팀은 기존보다 적은 자원으로도 원자 간 결합거리와 바닥 상태 에너지를 화학적 정확도로 추정할 수 있는 양자컴퓨팅 알고리즘을 구현해 별도의 양자 오류 완화 기술 없이도 정확한 계산을 수행하는 데 성공했다. 양자 컴퓨터는 연산 공간이 커지면서 오류가 급격히 증가하는 단점이 있다. 이를 극복하기 위해 고전 컴퓨터와 양자컴퓨터의 장점을 결합한 VQE(Variational Quantum Eigensolver) 방식이 등장했다. VQE는 ‘변분 양자 고유값 계산기’라는 의미로, 양자 컴퓨팅 프로세서(QPU)와 고전 컴퓨팅 프로세서(CPU)를 함께 사용해 더 빠른 계산을 수행하도록 고안된 하이브리드 알고리즘이다. IBM과 구글을 비롯한 글로벌 연구팀들이 초전도, 이온 트랩 등 다양한 양자 시스템에서 이를 연구하고 있다. 하지만 큐비트 기반의 VQE는 현재 광자 시스템에서 최대 2큐비트, 초전도 시스템에서는 12큐비트까지 구현된 상태로, 더 많은 큐비트와 복잡한 연산이 필요한 경우 오류 문제가 발생하여 확장이 어렵다는 한계가 있었다. 연구팀은 큐비트 대신 큐디트(Qudit)라는 고차원의 양자 정보를 활용하는 방식을 도입했다. 큐디트는 기존 큐비트가 표현할 수 있는 0과 1 외에도 0, 1, 2 등 여러 상태를 가질 수 있는 양자 단위로, 복잡한 양자 계산에 유리하다. 이번 연구에서는 광자의 궤도각운동량 상태를 이용해 큐디트를 구현했고, 홀로그램 이미지를 통해 광자의 위상을 조절함으로써 차원 확장이 가능했다. 이를 통해 복잡한 양자 게이트 없이도 높은 차원의 계산이 가능해져 오류를 줄일 수 있었다. 연구팀은 이 방법으로 4차원에 해당하는 수소 분자와 16차원에 해당하는 리튬 하이드라이드(LiH) 분자의 결합 거리를 추정하는 양자화학 계산을 VQE로 수행했으며, 이는 광자 기반 VQE를 통해 16차원 계산을 구현한 첫 사례다. IBM, 구글 등 기존의 VQE는 화학적 정확도를 위해 오류 완화 기술이 필요했지만, KIST 연구팀의 VQE는 별도 오류 완화 없이도 정확도를 확보했다. 이는 적은 자원으로도 높은 정확도를 얻을 수 있는 방법을 제시해, 분자 특성이 중요한 산업에 폭넓게 적용될 가능성을 보여준다. 또한, 기후 모형화와 같은 복잡한 문제 해결에도 유용할 것으로 기대된다. KIST 임향택 박사는 “적은 자원으로도 화학적 정확도에 도달 가능한 큐디트 기반 양자컴퓨팅 기술을 확보함으로써, 신약 개발과 배터리 성능 개선 등 다양한 실용적인 분야에 활용되기를 기대한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요 사업, 한국연구재단 양자컴퓨팅기술개발사업(2022M3E4A1043330) 등으로 수행됐다. 이번 연구 성과는 국제 학술지 「Science Advances (IF: 11.7 JCR 분야 상위 7.8%)」 에 게재됐다. * (논문명) Qudit-based variational quantum eigensolver using photonic orbital angular momentum states [그림 1] 궤도각운동량 큐디트 기반 VQE – 수소 (H2) 분자 공간 광변조기를 이용하여 궤도각운동량 큐디트 상태를 바탕으로 양자처리장치를 구현함. VQE를 바탕으로 분자 모델의 바닥 상태 에너지를 추정함. [그림 2] 궤도각운동량 큐디트 기반 VQE – LiH 분자 궤도각운동량 큐디트 기반 VQE 실험 구성. 16차원에 해당하는 4차원 수소 분자와 같은 실험 구성으로 LiH 분자 모델의 바닥 상태 에너지를 추정함.
- 584
- 작성자양자기술연구단
- 작성일2024.11.04
- 조회수6250
-
583
촉매 사용량 20분의 1! 수소 kg당 1달러 시대 앞당긴다.
촉매 사용량 20분의 1! 수소 kg당 1달러 시대 앞당긴다. - 고가의 이리듐 사용량을 크게 줄이면서도 성능과 내구성을 유지하는 촉매 구현 수전해 설비 대형화 과정의 걸림돌인 수전해 촉매 비용을 낮출 것으로 기대 한국과학기술연구원(KIST, 원장 오상록) 수소·연료전지연구단 김명근 박사, 유성종 박사 연구팀은 고내구성 탄소 지지체를 도입해 이리듐 사용량을 상용 촉매의 1/20 수준으로 줄인 고효율 수전해 촉매를 개발했다고 밝혔다. 최근 전 세계적으로 수소에 대한 수요가 높아지면서 수전해 설비의 대형화를 추진하고 있으나, 수전해 반응에서 가장 우수한 성능과 내구성을 보이는 이리듐 촉매의 높은 가격이 걸림돌로 작용하고 있다. 또한, 이리듐은 남아프리카 등 특정 지역에서만 채굴되기 때문에 공급 불안정성이 높아 이리듐 사용량을 줄인 촉매 개발이 필요하다. 연구팀은 이리듐 촉매의 사용량을 줄이기 위해 고내구성 탄소 지지체를 도입한 저이리듐 촉매를 개발했다. 기존의 탄소 지지체는 수전해 반응 구동 전압인 1.6~2.0 V에서 쉽게 이산화탄소 등으로 산화되기 때문에 안정적인 지지체 개발이 중요한 과제였다. 이를 해결하기 위해 물과의 상호작용이 적은 소수성 탄소를 지지체로 적용한 결과, 이리듐 사용량을 줄이면서도 탄소 부식 반응이 억제되는 것을 확인했다. 또한, 저이리듐 촉매의 내구성을 향상하기 위해 탄소 지지체 위에 셀레늄(Se)을 도입했다. 저이리듐 촉매는 수전해 반응 중 쉽게 변하거나 용출돼 내구성이 빠르게 저하되는 문제가 있었다. 연구팀은 이리듐의 반응 중 변화를 억제하는 기능을 가진 셀레늄을 이용해 이리듐 표면에 얇은 수산화물 층을 형성함으로써 이리듐 용출을 억제했다. 이번에 개발된 저이리듐 촉매를 상용화된 수전해 설비 적용한 결과, 이리듐 사용량을 기존의 1/20 수준인 0.05 mg/cm2으로 줄이면서도 성능이 향상되는 것을 확인했다. 단위면적당 0.05 mg의 이리듐을 도포한 막전극접합체(MEA)를 제작해 고분자 전해질막 수전해(PEMWE) 실험을 진행했을 때, 1.9 V에서 3.18 A/cm²의 전류밀도를 기록해 기존 상용 촉매(2.45 A/cm²)보다 우수한 성능을 보였다. 이번 연구 성과는 이리듐 사용량을 크게 줄이면서도 성능과 내구성을 동시에 유지하는 촉매를 구현해 수소 설비 대형화 과정에서 발생하는 고비용 문제를 해결하고 수소 생산 단가를 낮출 것으로 기대된다. 저이리듐 수전해 기술의 상용화를 위해 다양한 지지체 소재와 촉매 구조를 개발해 수소 생산 효율을 높이기 위한 연구를 수행할 계획이다. KIST 김명근 박사는 “저이리듐 촉매 구현을 위한 지지체 개발 및 촉매 성능 확보를 위한 전략을 함께 제시했다”라며 “대규모 촉매 합성 기술을 접목해 그린수소 생산 단가 낮추고 수소 사회로의 전환에 기여할 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 나노소재기술개발사업 (2021M3H4A1A02042948) 등으로 수행됐다. 이번 연구 성과는 국제 학술지 「ACS Energy Letters」 (IF 19.5, JCR 분야 3.8%)에 표지논문(Front Cover)로 게재됐다. * 논문명 : Iridium Selenium Oxohydroxide Shell for Polymer Electrolyte Membrane Water Electrolyzer with Low Ir Loading [그림 1] 셀레늄 도입에 따른 표면 수산화물층 형성과 이에 따른 이리듐 산화 및 용출 억제. 이리듐 산화는 이리듐 용출을 야기하는데, 셀레늄 도입 시 일정 시간 이후 산화가 억제되고 금속성 유지됨. [그림 2] 이리듐 로딩량에 따른 성능비교: 기존연구 (속이 빈 심볼), 현 연구 (속이 찬 심볼). 점선: 2050 DOE (미국 에너지부: Department of Energy) 목표의 이미지 X축: 단위면적당 이리듐 사용량을 나타내며 2050 DOE 타겟인 0.2 mg 이하의 결과는 많지 않음. 이리듐 사용량을 줄이면 성능이 우수해 보이지만, 보통 내구성을 동시에 유지하긴 어려움. Y축: 수전해 장치의 작동 전압 (1.6V, 1.9V)에서 이리듐 g 당 전력 값을 나타냄. 전압이 높으면 대개 높은 전력 값을 나타내지만, 내구성을 유지하기 어려움. 본 촉매는 DOE 타겟을 만족하는 이리듐 사용량으로 발표된 저이리듐 촉매 중 가장 높은 무게당 성능을 나타냄. 더 나아가 우수한 내구성 지표도 나타냄. [그림 3] 표지논문(Front Cover) 이미지 탄소 지지체 위에 얹어진 이리듐 나노입자
- 582
- 작성자수소ㆍ연료전지연구단
- 작성일2024.11.01
- 조회수6162
-
581
꿈의 온도, 250℃ 고온에서 작동하는세계 최고 수준의 차세대 수소연료전지 기술 나온다.
꿈의 온도, 250℃ 고온에서 작동하는 세계 최고 수준의 차세대 수소연료전지 기술 나온다. - 수소연료전지의 한계 넘은 250°C 이상의 고온에서 구동하는 핵심 소재 개발 세계 최고 성능 및 내구성 달성, 수소연료전지의 친환경 모빌리티 생태계 기대 최근 자동차, 무인 항공기 등 모빌리티 산업에서 장시간 안정적인 에너지 공급 장치에 대한 수요가 높아지고 있다. 기존의 상용 배터리와 달리 에너지밀도가 높은 수소를 활용한 수소연료전지 시스템은 친환경 에너지원으로 많은 관심을 받고 있다. 현재 80°C 정도의 저온에서 작동하는 연료전지는 자동차용으로는 상용화에 이르렀으나, 고온에서 구동된다면 지금보다 시스템의 크기를 줄이고 에너지밀도를 높일 수 있어 다양한 모빌리티 분야로 적용을 확대할 수 있다. 한국과학기술연구원(KIST, 원장 오상록) 수소‧연료전지연구단 이소영 박사, 남석우 박사(청정수소융합연구소장) 연구팀은 한국에너지공과대학교 김형준 교수 연구팀과 공동연구를 통해 꿈의 온도라 불리는 250°C 이상의 고온에서 구동할 수 있는 독자적인 연료전지 전해질막 및 막전극접합체(MEA)를 개발했다고 밝혔다. 연구진은 이번 연구에서 KIST의 세륨포스페이트 자가조립 기술에 한국에너지공과대학교의 파라-폴리벤지이미다졸(p-PBI) 합성 기술을 접목한 신규 합성법을 개발해 기존 PBI 기반 전해질막보다 150~300°C 범위에서도 뛰어난 전기화학적 성능과 내구성을 유지하는 데 성공했다. 연구팀은 자가조립형 세륨포스페이트 파라-폴리벤지이미다졸 고분자 전해질막을 설계해 막전극접합체(MEA)를 구현했다. 이를 한 반응기 안에서 파라-폴리벤지이미다졸과 세륨 수소 인산염(CeHP)을 결합해 온도 상승에 따른 자가조립이 가능한 새로운 고분자 전해질막을 설계했다. 그 결과, 250°C에서도 연료전지의 에너지밀도에 영향을 미치는 수소 이온의 높은 이온전도성을 안정적으로 유지할 수 있었다. 또한 200°C 이상에서 작동 시, 고순도 수소가 아닌 메탄올과 수소저장유기물(LOHC)를 직접 연료전지에 공급할 수 있어 효율이 높아지고, 가솔린 등의 연료 인프라를 그대로 활용 가능하다는 장점까지 확보돼 높은 경제성과 지속성을 제공할 수 있다. 이번에 개발한 ‘SAN-CeHP-PBI’ 기반의 연료전지는 250°C 조건에서 최대 출력 밀도가 세계 최고 수준인 2.35 W/cm²를 달성했으며, 80~160°C 열 사이클링 테스트에서 기존 대비 10배 이상의 5,000시간 이상의 장시간 운전이 가능함을 입증했다. 또한, 160~240°C 중고온 열 사이클링 테스트에서도 500시간 이상 성능 저하 없이 장시간 운전이 가능함을 확인했다. KIST 남석우 소장은 “이번 연구 결과는 해외 선진국들의 성과를 넘는 혁신적 성과이며, 글로벌 TOP 전략연구단의 핵심 기술로 미래 에너지의 핵심이 될 수소연료전지 기술의 글로벌 패권을 선도할 것으로 기대된다”고 밝혔다. KIST 이소영 박사는 “중대형 운송수단에 탑재 가능할 것으로 예상하며, 지속적인 연구개발을 통해 작동온도를 더 향상시킬 계획이다”라고 말했다. 한국에너지공과대학교의 김형준 교수는 “이 시스템은 다양한 산업에 걸쳐 지속 가능한 에너지원으로 자리매김하고 중대형 상용차, 도심 항공 모빌리티(UAM), 잠수함 등에 적용해 친환경 모빌리티 생태계 조성을 앞당길 것"이라고 말했다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 기후·환경연구개발사업(NRF-2022M3J1A1065570) 및 나노소재기술개발사업(RS-2023-00235295) 으로 수행됐다. 이번 연구 성과는 국제 학술지 「Nature Energy」 (IF 49.7, JCR 분야 0.3%)에 게재됐다. * 논문명 : Self-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C [그림 1] SAN-CeHP-PBI 전해질막의 단일 반응기 합성 및 전해질막 제조과정 SAN-CeHP-PBI 전해질막의 단일 반응기 제조 과정 및 자가조립형 이온전도CeHP 채널이 형성된 고분자전해질막의 전자현미경 사진 [그림 2] SAN-CeHP-PBI 전해질막의 고온연료전지 성능 비교 결과 다른 연료전지 성능과의 온도별 비교 및 SAN-CeHP-PBI 전해질막의 가속 열사이클링 (80-160도 구간 및 160-240도 구간) 내구성 평가 결과 그리고 10% CO 함유 연료에 따른 성능평가 결과 [그림 3] SAN-CeHP-PBI 전해질막 기반 고온 연료전지의 유기액상수소저장체(NEC, 메탄올) 직결 구동 성능 비교 및 에너지효율 모식도 (위 그림 설명) SAN-CeHP-PBI 전해질 막전극접합체를 이용 수소유기액상저장체 (NEC: 좌, 메탄올: 우) 연결을 통한 순수 H2 연료이용 성능과 비교 결과 및 향후 유기액상저장체 직접연료전지 개발 시 에너지효율 모식도 (아래 그림 설명) 250도 이상에서 연료전지가 구동하게 되면 에너지밀도가 훨씬 높은 LOHC(유기액상수소저장화합물)을 이용하여 추출, 개질등의 불필요한 과정 없이 연료전지를 직접 구동하여 기존 PEMFC대비 에너지효율을 극대화 할 수 있음
- 580
- 작성자수소연료전지연구단
- 작성일2024.10.29
- 조회수15152
-
579
이동 가능한 양팔로봇, 대학3곳과 공동연구실
현대차·기아가 국내 최대 연구 기관인 서울대·포스텍·한국과학기술연구원과 손잡고 ‘이동형 양팔 로봇 기술’을 연구한다고 23일 밝혔다. 4개 기관은 향후 3년 동안 ‘로보틱스 공동 연구실’을 결성하기로 했다. 특정 장소에 국한되는 연구실은 아니며, 각자의 연구 공간에서 이동형 양팔 로봇을 비롯한 로봇 기술에 관한 과제와 방향성을 공유하는 방식이다. 관련 기술의 경쟁력을 높이고 기술을 내재화하는 것이 목표다. 사람처럼 두 손을 이용하고 자유롭게 움직이는 ‘이동형 양팔 로봇’은 미래 로봇 기술의 핵심으로 꼽힌다. 기존 로봇 대비 정교하고 복잡한 작업을 수행할 수 있기 때문에 산업 현장에서 생산성을 대폭 올려줄 것으로 기대된다. 또, 기술이 일반화되고 대규모 양산이 이뤄지는 시기엔 일반 가정에도 도입돼 우리 삶의 모습을 크게 바꿀 전망이다. 현대차·기아의 로보틱스랩은 하드웨어, 서울대는 로봇의 인식 기능에 관한 소프트웨어 고도화에 주력한다. 포스텍은 로봇 조종 장비, 한국과학기술연구원은 로봇의 움직임을 예측해 제어하는 연구를 주로 수행한다. 현대차·기아는 한국에서는 로보틱스랩, 미국에서는 자회사 보스턴다이내믹스를 중심으로 로봇 기술을 내재화하고 있다. 현대차·기아 관계자는 “미래 서비스 로보틱스 시장에서는 환경과 상호작용하는 ‘이동형 양팔 로봇’ 기술이 핵심 역할을 담당할 것”이라며 “기술을 고도화해 다양한 서비스 로보틱스 시장을 창출하도록 노력할 예정”이라고 했다. 관련 : https://www.chosun.com/economy/auto/2024/10/24/37WY6WIEBRGQFPNAFPOEXQMVCQ/?utm_source=naver&utm_medium=referral&utm_campaign=naver-news
- 578
- 작성자연구지원실
- 작성일2024.10.24
- 조회수860
-
577
ʻ지구의 탄소 순환ʼ에서 얻은 아이디어, CCU 기술 상용화 실마리 제시
ʻ지구의 탄소 순환ʼ에서 얻은 아이디어, CCU 기술 상용화 실마리 제시 탄산염-규산염 지질화학 순환 아이디어로부터 새로운 은 혼합 촉매 개발 ‘실리카-수산화물’ 순환을 통한 국소 pH 제어 및 CO2 물질 전달 저하 방지 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 지구의 순환에 아이디어를 얻어 가역적 실리카-수산화물 순환을 통해 국소 pH 제어가 가능한 은-실리카 혼합 촉매를 개발했다고 밝혔다. 이번 연구 성과는 지구의 무기 탄소 순환이라 불리는 탄산염-규산염 순환으로 이산화탄소(CO2)가 균형을 이루는 과정에서 착안됐다. 이산화탄소(CO2)는 풍화 광물을 매립하는 동안 대기에서 제거되고, 화산활동을 통해 대기 중으로 돌아온다. 규산염 암석이 풍화되면서 발생한 SiO2(용해된 실리카)로 인해 탄산염 암석이 되고, 화산 작용을 거쳐 규산염 암석으로 재순환하는 과정에서 발생한 이산화탄소 수치에 따라서 지구의 온도를 조절한다. 이 순환의 핵심 물질인 실리카를 전기화학적 CO2 전환 반응에 적용한 것이다. CCU 기술에 적용되는 촉매 중 은 촉매는 이산화탄소를 석유화학 제품 원료인 일산화탄소로 전환하는 데 가장 탁월한 성능을 지녔다. 그러나 은 촉매는 높은 전류 밀도에서 촉매 표면의 입자들이 응집되거나 엉기는 현상이 발생해 일산화탄소에 대한 선택도가 급격하게 감소하는 등 아직 상용화 수준에 이르지 못하고 있다. 연구팀은 은 촉매의 성능을 유지하기 위해 실리카를 혼합한 은-실리카 혼합 촉매를 개발했다. 이 촉매는 반응 중 생성되는 수산화물 이온(OH-)이 실리카와 결합해 규산염 형태로 녹았다가 중성 조건에서 다시 석출되면서 pH를 조절한다. 이를 통해 촉매의 물리적 구조 변경 없이 화학적 접근 방식만으로도 전류 밀도가 높아지면서 발생하는 성능 저하 문제를 해결했다. 연구팀이 개발한 은-실리카 혼합 촉매는 800mA cm-2의 고전류 밀도에서 일산화탄소 선택도가 60% 수준으로 감소한 상용 은 촉매와 달리 1A cm-2의 더 높은 전류 밀도에서도 100%에 가까운 선택도를 보였다. 또한, 일산화탄소로의 CO2 전환 활성도를 약 47% 높여 고전류 밀도에서도 CO2 전환 반응의 높은 효율을 달성했다. 은-실리카 혼합 촉매는 높은 전류 밀도에서도 CO2 환원 성능과 내구성을 개선하는 데 성공해 전기화학적 CO2 전환 CCU 기술의 상용화 가능성을 크게 높일 것으로 기대된다. 고전류 밀도에서도 높은 일산화탄소 선택도 및 가역성에 의한 장기간 성능 유지가 가능해 생산성 및 경제성을 높일 수 있다. 이를 위해서 고효율 촉매의 대량생산을 위한 공정 최적화와 발전소, 석유화학 공장 등 산업시설에 적용을 위한 장기 내구성 검증 연구를 수행할 계획이다. KIST 오형석 청정에너지연구센터장은 “촉매의 가역성 향상 및 전기화학 시스템의 환경 제어 전략에 대한 방향성을 제시했다는 점에서 의미가 있다”며, “향후 전기화학 시스템의 실증 구축 및 상용화에 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 성과는 국제학술지 ‘Energy & Environmental Science’ (IF 32.4, JCR 분야 0.3%)에 표지논문(Front Cover)으로 게재됐다. * 논문명 : Breaking the current limitation of electrochemical CO2 reduction via a silica-hydroxide cycle [그림 1] 제로갭 CO2 전기분해 디바이스의 염기성 문제를 나타낸 모식도 위의 그림은 적절한 전류 밀도에서의 CO2 환원 반응 상황을, 아래 그림은 높은 전류 밀도에서의 CO2 환원 반응을 모식도로 표현한 것이다. CO2 환원 반응에서 생성되는 수산화물 이온(OH-)이 높은 전류 밀도에서는 더 많이 발생하고, 이 수산화물 이온은 CO2와 결합하여 CO2가 촉매 표면으로 이동하는 것을 방해하여 성능을 저해하는 원인이 된다. [그림 2] 지구상에 존재하는 탄산염-규산염 순환 모식도 지구상에 존재하는 무기 탄소 순환이라고도 불리는 탄산염-규산염 순환 과정을 모식도로 표현한 것이다. 먼저 규산염이 풍화 과정을 통해 SiO2(용해된 실리카)를 용액으로 방출하면서 탄산염이 되고 다시 규산염으로 재순환되는 과정에서 대기 CO2의 흡수와 방출을 반복하며 기후 제어를 한다. [그림 3] 실리카를 수산화칼륨 용액에 용해시켰을 때와 용해시킨 후 CO2로 퍼징했을 때의 결과를 나타낸 사진과 실리카의 가역적 거동을 나타낸 모식도 실제 사용된 실리카 가루와 이 실리카를 KOH 용액에 용해한 것, 실리카를 KOH 용액에 용해한 후 CO2 가스를 주입하여 석출된 실리카를 확인한 사진(위)과 이러한 가역적 과정을 간단하게 그림(아래)으로 나타낸 것이다. 실리카가 염기성인 KOH 용액에서는 수산화물 이온과 결합한 형태로 용해되어 보이지 않다가 CO2 가스를 주입하여 중성이 되면서 다시 실리카로 석출되어 나온다. 이러한 과정이 전기화학적 CO2 환원 반응 중에 가역적으로 발생한다. [그림 4] 은-실리카 환원 전극을 이용한 전기화학적 CO2 환원 반응 중에 발생하는 실리카-수산화물 순환 모식도 은-실리카 환원 전극을 이용한 전기화학적 CO2 환원 반응 중에 발생하는 규산염-수산화물 순환을 모식도로 나타낸 것이다. CO2 환원 반응 중 생성되는 수산화물 이온에 의해 환원 전극 내 실리카의 풍화작용으로 인하여 용해된 상태로 존재하다가 음이온 교환막 근처에서 수산화물 이온을 방출하고, 이는 다시 실리카로 석출되어 환원 전극에 붙어 가역적 과정이 가능한 물질이 된다. 이러한 과정을 통하여 CO2의 물질 전달이 저해되는 현상을 방지하여 고성능의 CO2 전기분해가 가능하다. [그림 5] 표지논문(Front cover) 선정 이미지
- 576
- 작성자청정에너지연구센터
- 작성일2024.10.22
- 조회수6148