보도자료
-
465
LOHC 상용화를 위한 핵심기술 개발
- KIST-POSTECH 연구팀, LOHC 탈수소화용 나노촉매 개발 - 수소 추출 공정 중 발생하는 부산물 줄여 수입 실증에 필요한 핵심기술 확보 지난해 11월 정부에서 발표한 제1차 수소경제 이행 기본 계획에 따르면 우리나라는 2030년까지 국내 수소 공급량을 390만 톤으로 늘리는 것을 목표로 하고 있지만, 이 중 절반 이상인 196만 톤을 해외에서 생산된 수소로 수입하여 공급할 계획이다. 그런데, 수소는 압축시켜 선박을 이용해 국내로 이송하기 때문에 한 번에 수입할 수 있는 수소량이 제한적이라는 문제가 있다. 최근 대용량의 수소를 저장 후 상온·상압에서 운송할 수 있는 액상유기수소운반체(LOHC, Liquid Organic Hydrogen Carriers) 기술이 주목받는 이유다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 손현태 박사와 포항공과대학교(POSTECH, 총장 김무환) 화학공학과 윤창원 교수 공동연구팀은 LOHC의 수소 추출공정에 필요한 다공성 실리카 기반 나노촉매를 개발했다고 밝혔다. 개발된 촉매는 수소 추출공정에서 발생하는 부산물의 양을 획기적으로 줄임과 동시에 추출 속도도 빨라서 향후 대규모 수소운송 실증을 가능케 하는 핵심기술이 될 것으로 기대된다. LOHC는 유기화합물을 수소 저장, 운송 및 방출을 위한 매개 물질로 사용하여 대용량의 수소를 이송하는 기술이다. 이는 경유, 휘발유 등과 비슷한 성질을 가지고 있어 초기 투자비용 없이 기존의 석유화학 시설 인프라를 그대로 활용할 수 있다는 장점이 있고, 암모니아를 이용한 액체기반 수송과는 다르게 수소 저장 및 추출 사이클을 반복하는 것이 가능해 비용을 줄일 수도 있다. 하지만, 수소 추출 공정중 소량 발생하는 부분탈수소화물질(부산물)이 저장-추출 사이클의 반복 과정에서 누적되어 수소 저장량의 감소와 함께 전체 공정의 효율을 떨어뜨리는 한편, 고온에서 진행되는 수소 추출 공정에서 촉매의 안정성이 낮아져 수소생산 속도 또한 낮아진다는 문제점이 있었다. 공동연구팀이 개발한 촉매는 3차원 중형 다공성 실리카 (Ordered mesoporous silica, KIT-6 KIT-6: 3차원 중형 다공성 실리카(Ordered mesoporous silica)의 일종 )에 1-2 나노미터(1nm: 10억분의 1m) 크기의 백금(Pt) 금속 백금 금속: 원자 번호 78번의 금속, 무겁고, 연성이 있는 값비싼 귀금속으로 10족에 속하는 전이 금속임. 이 고르게 퍼져있는 형태로 상용 촉매 Pt/Al2O3보다 약 2.2배의 탈수소화 성능을 기록하였으며, 액상 생성물 분포에서도 바이페닐 기반 LOHC 탈수소화 부산물이 상용 촉매 대비 1/20 수준으로 발생함을 확인하였다. 뿐만 아니라 나노 백금 금속 입자가 3차원 다공성 실리카 지지체의 각 기공 안에 존재하기 때문에 높은 반응 온도에서도 안정적이며, 장시간 사용해도 촉매 성능이 유지된다는 것을 확인했다. KIST 손현태 박사는 “본 연구는 촉매의 기공 크기 및 바이페닐 기반 LOHC 반응물의 체류 시간을 조절하여 수소 선택도와 생산 속도를 높인 경우”라며, “향후 추가적인 연구를 통해 본 촉매를 바이페닐 기반 외 다양한 LOHC 추출공정에 적용해 보는 것이 목표”라고 말했다. POSTECH 윤창원 교수는 “2019년에 출범한 국내 LOHC 원천기술개발 연구단은 이미 LOHC와 관련된 촉매, 반응기, 공정 및 시스템 구축 기술을 확보하였으며, 앞으로 연구단에서 얻은 결과를 활용하여 해외에서 대용량의 수소를 LOHC로 들여오기 위한 시스템 스케일 업 연구개발이 필요하다.”고 말했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로, 한국연구재단 “수소에너지혁신기술개발사업”으로 수행되었으며, 이번 연구 결과는 에너지 환경 분야 저명 국제 학술지인 ‘Applied Catalysis B-Environmental’ (IF: 19.503, JCR 분야 상위 0.926%) 최신 호에 게재되었다. * (논문명) Dehydrogenation of homocyclic liquid organic hydrogen carriers (LOHCs) over Pt supported on an ordered pore structure of 3-D cubic mesoporous KIT-6 silica - (제 1저자) 한국과학기술연구원 안창일 박사후 연구원 - (교신저자) 한국과학기술연구원 손현태 선임연구원 - (교신저자) 포항공과대학교 (POSTECH) 화학공학과 윤창원 교수 그림 설명 [그림 1] KIST-POSTECH 공동연구진이 개발한 LOHC 탈수소화용 촉매 구조 모식도
- 464
- 작성자수소·연료전지연구센터 손현태 박사팀
- 작성일2022.06.13
- 조회수15025
-
463
화재 걱정 없는 ESS, 수계아연전지 핵심기술 개발
- 저비용·친환경 전해도금 공정으로 아연금속 음극 성장 및 최적화 성공 - ‘폭발 위험’ 높은 리튬기반 에너지 저장장치를 수계아연전지로 대체 기대 최근 대부분의 ESS는 이차전지 중 기술 성숙도가 가장 높은 리튬이온전지를 채택하고 있다. 하지만 화재의 위험성으로 인해 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받고 있다. 국제적인 원자재 공급 불안정성 역시 큰 문제로 대두되고 있다. 반면 수계아연전지는 물을 전해질로 사용해 배터리 발화가 근본적으로 차단되며 원재료인 아연의 가격도 리튬의 1/16에 불과하다. 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 수계아연전지 상용화의 열쇠인 ‘고밀도 아연금속 음극’ 제조기술 개발에 성공했다고 밝혔다. 이번 제조기술은 특히 저비용·친환경 용액을 이용하여 쉽고 간단한 전해도금 공정만으로도 높은 에너지밀도와 긴 수명의 아연금속 음극을 만들 수 있어 수계아연전지 대량생산의 기폭제가 될 것으로 전망되고 있다. 이론적으로 수계아연전지는 다가 이온을 활용하여 이온 하나당 두 개의 전자를 이용하기 때문에 알칼리 금속 이온 대비 부피당 에너지밀도 측면에서도 유리하다. 전지를 제작할 때 음극으로 사용되는 아연금속의 용량이 양극의 2배만 넘지 않으면 현재 상용화된 리튬이온전지에 버금가는 에너지밀도의 구현이 가능하다. 심지어 아연금속의 용량이 양극의 5배에 달해도 부피당 에너지밀도 측면에서 차세대 배터리로 주목받는 소듐이온전지와 비슷할 만큼 경쟁력이 뛰어나다. 하지만, 아연금속 음극은 전지 구동 시 나노입자가 불규칙하게 성장하고 부식이 일어나 이차전지의 에너지 밀도와 수명을 지속적으로 저하시킨다는 문제를 안고 있었다. 음극 내 낮은 아연금속 입자 밀도와 넓은 표면적이 전해액과의 부식반응을 가속화해 활성 아연금속과 전해액을 고갈시키는 것이다. 기존의 연구들은 이런 수명의 한계를 보완하기 위해 일반적으로 필요보다 20배 이상 많은 양의 두꺼운 아연금속을 사용하는데, 이는 역설적으로 수계아연전지의 최대 강점인 에너지밀도와 가격 경쟁력의 저하를 불러올 수밖에 없었다. 이에 따라 KIST 이민아 박사팀은 수계아연전지의 에너지밀도와 수명 저하를 유발하는 부반응을 줄이기 위해 아연금속 음극의 미세구조를 제어했다. 이를 통해 상온에서 간단하게 합성할 수 있는 DES(Deep eutectic solvent, 깊은공융용매) 용액을 제조했다. 제조한 DES 용액은 콜린클로라이드(Choline chloride, ChCl)와 요소(Urea)를 1:2의 몰비로 혼합하여 녹는점이 12℃인 액체 상태의 복합체가 되는 대표적인 DES 물질로 알려져 있다. 연구진은 DES 내에서 아연과 구리 집전체 사이에 친아연성 구리-아연 합금층이 자발적으로 형성되며 고밀도의 아연 입자를 성장시킨다는 사실을 확인했다. 연구진은 이를 활용해 저비용·친환경인 DES용액에서 아연금속을 조밀하고 균일하게 성장시키는 전해도금 공정을 개발하는데 성공했다. 이렇게 제조한 아연금속 음극을 수계아연전지 시스템에 적용한 결과, 부식반응이 효과적으로 억제돼 7000회 이상의 반복적인 충방전 이후에도 70% 이상의 용량을 유지하는 것으로 나타났다. 이는 얇은 아연을 활용한 기존의 유사 연구들 중에 가장 뛰어난 결과이며 상용 리튬이온 이차전지의 충방전 수명(1000~2000회)을 크게 상회하는 수치이다. KIST 이민아 박사는 “신재생에너지 보급과 확대의 가장 큰 걸림돌인 ESS의 화재 안전성을 단번에 해결할 수 있는 수계아연전지의 상용화 핵심 기술을 개발하게 됐다”라며 “이번 고밀도 아연음극 제조기술은 특히 경제적이고 친환경적인 DES 용액과 이미 산업 전반에서 널리 쓰이는 전해도금 공정이 결합돼 수계아연전지 대량 생산의 길을 열게 될 것으로 기대한다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노·미래소재원천기술개발사업, 개인연구사업(중견연구) 및 KIST 주요사업을 통해 수행되었으며, 연구결과는 에너지 및 환경과학 분야의 세계적 권위지 ‘Energy & Environmental Science’ (IF:38.532, JCR 분야 상위 0.182%) 최신 온라인판에 게재되었다. * (논문명) Stimulating Cu-Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors - (제 1저자) 한국과학기술연구원 권민형 학생연구원 - (교신저자) 한국과학기술연구원 이민아 선임연구원 그림 설명 [그림1] 기존 수계 전해액에서 불규칙하게 생성되어 부식 반응을 유발하는 아연 입자와 달리 DES 용액에서 성장시킨 아연은 빽빽하고 균일하여 충·방전 후에도 안정적으로 구조를 유지한다. [그림2] 아연금속 전해도금 후의 표면 및 단면 미세구조 [그림3] KIST 이민아 박사팀 연구진은 (좌측) 염화콜린(ChCl)과 (가운데) 요소(UREA)를 혼합하여 (우측) 친환경 공융용매(DES)를 제작했다. [그림4] KIST 권민형 연구원이 공융용매를 활용하여 제작한 고밀도의 아연음극과 이를 적용하여 획기적으로 성능이 개선된 수계아연전지(파우치형)를 살펴보고 있다. [그림5] 차세대 수계아연전지용 고밀도 음극제조기술 개발에 성공한 KIST 에너지저장연구센터 이민아 박사(좌, 교신저자) 와 권민형 연구원(우, 제1저자).
- 462
- 작성자에너지저장연구센터 이민아 박사팀
- 작성일2022.06.08
- 조회수11287
-
461
악성? 양성? 인공촉각뉴런으로 빠르고 정확히 진단
- 물질의 딱딱한 정도를 빠르고 정확하게 변환하는 인공촉각뉴런소자 개발 - AI 기술과 결합, 종양의 딱딱한 정도와 모양을 학습하여 암진단 가능성 제시 세포에서부터 조직에 이르기까지 다양한 생체 물질의 딱딱한 정도와 모양은 질병과 관련된 정보를 반영한다. 예를 들어 유방암의 경우 일반적으로 악성 종양이 양성 종양보다 더 딱딱하고 불규칙한 모양을 지닌다. 탄성 초음파 검사는 비침습적으로 조직의 딱딱한 정도와 모양을 파악할 수 있으며, 비용이 저렴하여 유방암 진단에 주로 활용되고 있다. 그러나 탄성 초음파 이미지를 해석하기 위해서는 경험이 많은 전문가의 견해가 필수적이고 전문가 간 정확도에도 차이가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 이현정 박사팀과 인공뇌융합연구단 이수연 단장팀이 촉각 뉴런 소자와 인공신경망 학습 방법을 접목시켜 간단하지만 정확도가 높은 질병 진단기술을 개발했다고 밝혔다. KIST 연구진이 개발한 촉각 뉴런 소자는 기존에 보고된 인공 촉각 뉴런 소자와는 달리 접촉하는 물체의 딱딱하고 부드러운 정도의 구분이 가능하다. 뉴로모픽(Neuromorphic) 기술은 적은 에너지를 소비하면서 고차원적인 기능을 수행하는 인간 뇌의 정보처리 방식을 전자회로로 모방하려는 연구 분야다. 복잡하고 방대한 정보를 실시간으로 처리해야 하는 인공지능, 사물인터넷, 자율주행차 시대에 적합한 새로운 데이터 처리 기술로 각광받고 있다. 감각 뉴런은 감각 수용체를 통하여 외부 자극을 받아들이고 이를 전기적 스파이크 신호 형태로 변환하는데, 이 때 외부 자극에 대한 정보에 따라 생성되는 스파이크 패턴이 달라진다. 예를 들어, 자극이 세기가 클수록 생성되는 스파이크의 주파수가 빨라진다. KIST 연구진은 이러한 감각 뉴런의 특성을 구현하기 위해 압력센서와 오보닉 임계 스위치 소자를 결합한 간단한 구조의 인공촉각뉴런소자를 개발했다. 압력 센서에 압력이 가해지면 센서의 저항이 낮아지고 연결된 오보닉 스위치 소자의 스파이크 주파수가 변화된다. 개발된 인공촉각뉴런소자는 딱딱한 물질일수록 누를 때 압력을 더 빨리 느낀다는 부분에 착안해 누르는 힘이 록 더 빠른 전기적 스파이크를 발생시키도록 하고, 압력에 대한 감지 민감도를 동시에 개선한 고응답, 고민감도 소자이다. 개발된 소자에서 발생되는 전기적 스파이크의 속도는 0.00001초 이하여서 일반적으로 물체를 누르는데 수 초가 걸리는 것과 비교해 100,000배 이상 속도가 빨라 실시간으로 누르는 힘의 변화를 스파이크로 변환할 수 있다. 또한, 기존 소자가 물질을 가볍게 누르는 정도의 낮은 압력(약 20kPa)을 20~40 Hz 수준의 스파이크 변화량으로 감지할 수 있었던 반면 개발된 소자는 1.2MHz 수준으로 감지가 가능하다. 연구진은 개발한 소자를 실제 질병 진단에 활용하기 위해 누르는 물체의 딱딱한 정도에 따라 달라지는 스파이크 변화량에 스파이킹 인공신경망 학습기법을 접목하여 악성 또는 양성의 유방암 탄성 이미지에 대한 학습을 진행한 결과 최대 95.8%의 정확도로 유방 종양의 악성여부를 구분할 수 있었다. 탄성 초음파 이미지의 픽셀별로 나타난 색을 스파이크 주파수 변화량 수치로 변화시키고, 이를 인공지능에 학습시킴으로써 더 간단하고 정확하게 유방암 진단이 가능하도록 한 것이다. KIST 연구진은 “개발된 인공촉각뉴런 기술은 간단한 구조와 방식으로 기계적인 물성 감지 및 학습이 가능하다.”면서 “후속 연구를 통해 현재 탄성 초음파 이미지로 얻을 수 있는 물체의 탄성 이미지를 인공촉각뉴런으로 얻을 수 있게 된다면 초음파 탄성 이미지의 단점인 반사 노이즈 문제를 해결할 수 있을 것”이라고 밝혔다. 또한 “저전력, 고정확도의 질병 진단 뿐만 아니라 로봇 수술 등과 같이 수술 부위를 인간이 직접 접촉할 수 없는 환경에서 빠른 시간 내에 인식하고 판단해야 하는 상황에도 유용하게 활용될 수 있을 것”으로 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업, 차세대지능형반도체기술개발사업, 미래반도체신소자원천기술개발사업, 나노·소재원천기술개발사업으로 수행되었으며, 이번 연구결과는 재료 분야 국제 저널인 ‘Advanced Materials’ (IF: 30.849, JCR 분야 상위 2.160%) 최신 호에 게재되었으며 표지논문으로 선정되어 출판될 예정이다. * (논문명) An Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis - (제 1저자) 한국과학기술연구원 이준석 학생연구원 - (제 1저자) 한국과학기술연구원 김선정 학생연구원 - (교신저자) 한국과학기술연구원 이수연 책임연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 그림 설명 [그림 1] 생물학적 촉각 뉴런과 본 연구에서 개발한 인공 촉각 뉴런 소자의 동작 비교 모식도 [그림 2] (왼쪽) 누르는 물질의 딱딱한 정도에 따른 인공 촉각 뉴런 소자의 스파이크 신호 패턴 예시, (오른쪽) 생성된 스파이크 정보를 바탕으로 유방암 탄성 초음파 이미지를 학습하여 종양의 악성/양성을 판단하는 예시. 빨간색은 부드러운 영역을, 파란색은 딱딱한 영역을 나타냄
- 460
- 작성자스핀융합연구단 이현정·인공뇌융합연구단 이수연 박사팀
- 작성일2022.06.06
- 조회수10947
-
459
KIST, 양자암호 상용화를 위한 핵심기술 개발
- 세계 두 번째로 확장 가능한 TF QKD 네트워크 구조 검증 현대의 암호 체계는 수학적인 문제를 기반으로 공개키와 비밀키를 생성하고, 이를 이용하여 정보를 암호화하고 해독하는 것이 일반적이다. 반면 계산 복잡도가 아닌 양자역학 법칙에 기반하고 있는 양자암호는 양자컴퓨터의 연산 능력과 관계없이 높은 보안성을 보장할 수 있어서 조만간 현대 암호체계를 대체할 수 있을 것으로 보인다. 양자키 분배(QKD, Quantum Key Distribution) 기술은 양자암호의 상용화를 위해 반드시 갖추어야 할 핵심 기술로 꼽힌다. QKD 구현을 위해 해결해야만 하는 주요 기술 이슈는 두 가지가 있다. 첫째는 현재 약 100km내에서만 작동이 제한되는 통신거리이고, 두 번째는 일대일(1:1) 통신에서 일대다(1:N) 또는 다대다(N:N) 네트워크 통신으로 확장하는 것이다. 2018년에 발표된 TF(Twin-field) QKD는 기존 QKD 시스템의 통신거리를 획기적으로 늘릴 수 있는 장거리 프로토콜로 주목받았다. QKD 시스템은 양자신호를 송수신부로 전송하는 과정에서 양자신호의 손실이 발생하는데, TF QKD는 수신자와 송신자가 양쪽에서 동시에 정보를 보낼 수 있고, 제 3자의 측정 장치를 중간에 추가하여 수신자 송신자가 중간까지만 정보를 송신하더라도 통신이 가능하게 하여 통신거리가 증가되는 효과를 가진다. 그러나 TF QKD 프로토콜의 검증은 시스템 개발 난이도가 매우 높아 세계적인 QKD 선도그룹에서만 성공하였고, 네트워크 통신 확장에 관한 연구는 미진한 상태이다. 한국과학기술연구원(KIST, 원장 윤석진)은 양자정보연구단 한상욱 단장 연구팀이 단일 광원을 사용하는 PnP 구조를 적용하여 TF QKD 시스템 작동에 필요한 난이도를 낮추는 것과 동시에, 1:1이 아닌 다대다 네트워크로 확장이 동시에 가능한 시스템 구조를 제안했다고 밝혔다. 이는 캐나다 토론토 대학에 이어 TF QKD 네트워크 실험 검증에서는 세계에서 두 번째로 성공한 것이다. 연구팀은 TF QKD 시스템의 개발 난이도를 개선하기 위해 플러그앤플레이 (Plug and play, PnP) 구조를 적용하였다. 기존 TF-QKD 시스템에서는 송수신자가 각각 양자신호로 두 개의 광원을 사용하였기 때문에 서로 다른 두 광원의 특성을 동일하게 만들기 위한 제어 시스템이 필요하다. KIST 연구팀이 개발한 PnP TF QKD 구조는 하나의 광원으로만 동작하여 제 3자의 측정 장치가 동일한 광원을 양쪽 송수신자에게 전달하고 그 광원을 활용하여 정보를 공유하는 시스템이다. 이러한 이유로, 동일한 양자 신호가 통신 채널을 왕복하기 때문에 채널에서 발생하는 편광 노이즈(잡음)가 자동으로 보상되는 특징을 가지고 있다. 연구팀은 또한 편광, 시간, 파장 분할 기술을 적용하여 2:N 네트워크로 확장 가능한 새로운 TF QKD 네트워크 구조를 제안하고 실험적으로 검증하였다. 이는 세계에서 두 번째로 TF QKD 네트워크 실험 검증에 성공한 사례이다. 최초의 연구사례는 링(Ring) 네트워크 구조인 반면 연구팀의 구조는 별(Star) 네트워크 구조이다. 링 구조는 양자신호가 링에 연결된 모든 곳을 지나야 하지만, 별 구조에서는 중심부만 거치기 때문에 보다 실용적인 QKD 시스템 구현이 가능하다. 연구를 주도한 양자정보연구단 한상욱 단장은 “QKD의 상용화를 가로막던 장거리, 네트워크 확장 두 가지 과제를 동시에 해결한 연구성과”라면서 “장거리 양자암호 네트워크 분야를 리딩할 수 있는 기반 기술을 확보했다는 것에 의의가 있다”고 밝혔다. 이번 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 양자컴퓨팅기술개발사업, IITP 정보통신방송기술개발사업으로 수행되었으며, 연구 결과는 ‘npj Quantum Informaion’ (IF: 7.385 JCR 분야 상위 4.054%) 최신호에 게재되었다. * (논문명) 2×N twin-field quantum key distribution network configuration based on polarization, wavelength, and time division multiplexing - (제 1저자) 한국과학기술연구원 박창훈 학생연구원 - (공동교신저자) 아주대학교 김상인 교수 - (공동교신저자) 한국과학기술연구원 한상욱 책임연구원 그림 설명 [그림 1] 2:N TF QKD 네트워크 구조 [그림 2] 실험 모식도
- 458
- 작성자양자정보연구단 한상욱 박사팀
- 작성일2022.05.23
- 조회수12989
-
457
소형 수소차를 넘어 수소 트럭·비행기 시대로
- 이오노머 미세다공성 구조에 영향 미치는 분산용매 파라미터 발견 - 고온, 무가습 조건에서 고분자전해질 수소연료전지 성능 향상 수소연료전지는 수소와 공기 중의 산소의 반응을 통해 전기 에너지를 만들어내는 장치로, 공해 물질을 배출하지 않아 친환경 전원 공급 장치로 주목받고 있다. 다양한 방식의 수소연료전지 가운데 이온교환이 가능한 고분자 막을 전해질로 사용하는 고분자전해질 연료전지 (PEMFC)는 비교적 무게가 가볍고 시동 시간이 빨라 가정용, 자동차용 전원으로 연구되고 있다. PEMFC는 작동 온도가 높을수록 전기화학 반응 속도가 빨라지고 불순물에 대한 높은 저항성을 갖기 때문에 고성능을 요구하는 트럭, 지하철, 기차, 비행기, 선박 등에 사용될 수 있다. 그러나 100℃ 이상의 고온에서는 고분자 내 수분이 증발하면서 이온전도도가 감소하는 것을 방지하기 위해 별도의 냉각 시스템이 필요하고, 이로인해 증가되는 무게는 PEMFC의 효율성 저하로 이어진다. 냉각 시스템 없이 PEMFC를 사용하기 위해서는 80~200℃의 고온·무가습 조건에서의 성능 개선이 필요한 상황이다. 한국과학기술연구원 (KIST, 원장 윤석진)은 물질구조제어연구센터 이성수 박사팀이 로스알라모스 연구소 (LANL) 김유승 박사팀과의 공동연구를 통해 고분자전해질 연료전지의 성능향상에 핵심역할을 하는 이오노머의 미세다공성 구조를 조절할 수 있는 플랫폼을 개발했다고 밝혔다. 포스폰산(RPO3H2)을 함유하는 고분자와 설폰산(RSO3H)을 함유하는 고분자를 조합하면 산의 세기가 더 센 설폰산의 수소가 포스폰산으로 전달되고, 양성자화된 포스폰산 이오노머가 형성된다. 이러한 복합 이오노머를 사용하면 물 없이도 이온전도가 가능하여 고온·무가습 조건에서 높은 수소연료전지 성능을 보이게 된다. 여기에 반응기체인 수소와 산소의 접근성을 높인다면 더 높은 성능 향상을 기대할 수 있다. KIST-LANL 공동연구진은 복합 이오노머가 미세다공성 구조를 가지도록 하여 반응기체의 접근성을 유도하였다. 연구진은 복합 이오노머의 미세다공성 구조는 이를 분산시킨 용매에 달려있으며, 특히 분산 용매의 pKa (산의 세기)와 포스폰산 이오노머 미세다공성 구조 사이에 직접적인 상관관계가 있다는 것을 밝혀냈다. 이후 고온-수소연료전지의 성능평가를 통해 복합 이오노머의 미세다공성 구조가 연료전지의 성능에 긍정적인 영향을 미치는 것을 확인하였다. KIST 이성수 박사는 “이번 성과는 고온-수소연료전지에서 이오노머 분산 용매의 pKa의 중요성을 발견한 것”이라며 “소형 이동 수단 뿐만 아니라 트럭이나 선박 등과 같은 대형 모빌리티로 수소연료전지의 활용처를 넓혔다”고 연구의 의의를 밝혔다. 이번 연구는 미국 에너지부 Advanced Research Projects Agency-Energy, 과학기술정보통신부(장관 이종호)의 소재혁신선도사업, KIST 주요사업으로 수행되었으며, 연구결과는 ‘ACS Energy Letters’ (IF: 23.101, JCR 상위 3.302%)에 게재되었다. * (논문명) Dispersing Agents Impact Performance of Protonated Phosphonic Acid High-Temperature Polymer Electrolyte Membrane Fuel Cells - (제 1저자) 한국과학기술연구원 정지윤 학생연구원 - (제 1저자) Los Alamos 연구소 임희은 박사후연구원 - (교신저자) 한국과학기술연구원 이성수 선임연구원 - (교신저자) Los Alamos 연구소 김유승 책임연구원 그림 설명 [그림 1] 이오노머 분산 용매에 따른 양성화된 포스폰산 필름의 모습과 전자현미경으로 살펴본 필름의 미세구조 및 원소 분석. [그림 2] 다양한 분산 용매로 처리된 MEAs(Membrane Electrode Assemblies, 막전극접합체)의 출력 밀도. 다공성도가 높은 유기용매로 성형한 MEA가 최대 출력 밀도를 나타냄.
- 456
- 작성자물질구조제어연구센터 이성수 박사팀
- 작성일2022.05.19
- 조회수10055
-
455
테라헤르츠파의 새로운 미래
- OLED 구성물질을 비접촉·비파괴·실시간 검사 가능성 - OLED 디스플레이 불량 검사로 테라헤르츠파의 새로운 응용 분야 개척 빛과 전파의 중간영역에 존재하며 1초에 1조 번 진동하는 ‘테라헤르츠파’는 직진성과 침투성을 가지면서도 에너지가 낮아 물질을 파괴하지 않고 인체에 무해한 성질을 가진다. 그래서 테라헤르츠파는 ‘꿈의 주파수’라 불리며 의료, 산업, 국방 등 많은 분야에서 사용되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 전영민 박사(센서시스템연구센터), 서민아 박사(센서시스템연구센터, KU-KIST 융합대학원) 연구팀이 고려대학교 주병권 교수(전기전자공학부) 연구팀과 공동으로 테라헤르츠파 분광기술을 이용하여 OLED 구성물질의 투과 특성을 실시간·비파괴로 분석할 수 있는 기술을 개발했다고 밝혔다. 백라이트가 필요한 LCD와 달리 유기발광다이오드(OLED)는 스스로 발광하는 성질이 있어 전력소모가 적고, 디스플레이의 박막화 및 경량화가 가능하다. 또한 유연성이 있어 접거나 돌돌 마는 형태 등으로 활용할 수 있는 장점이 있으나 제조원가가 비싸다는 단점이 있다. 제조 중간단계에서 결함을 찾아 수리하여 수율을 높인다면 OLED 디스플레이의 가격 경쟁력을 높일 수 있는데, 이를 위해서는 OLED 디스플레이를 비접촉·비파괴·실시간으로 검사할 수 있어야 한다. 전통적인 전기검사법은 OLED 디스플레이에 전극을 붙여야 하므로 시간이 걸리고, 전극을 부착할 때 OLED 디스플레이가 파괴되어 재사용할 수 없다. 전기검사법의 한계를 극복하기 위한 형광검사법은 자외선을 조사하여 OLED 물질에서 나오는 형광을 측정하는데, 비접촉이기는 하지만 자외선을 조사한 곳의 OLED 물질이 일부 파괴되어 특성이 변한다는 사실이 밝혀졌다. 본 연구에서는 OLED 구성물질인 mCBP, mCP, DPEPO에 인위적으로 결함을 주기 위해 5시간 동안 자외선을 조사해가면서 테라헤르츠파 주파수에 따른 OLED 물질별 흡수율을 측정하여 최적화된 신호를 1.1 THz에서 얻을 수 있음을 확인하였다. 또한 테라헤르츠파의 투과율 변화를 통해 감쇠시간을 구함으로써 OLED 물질별 성능저하(결함)의 정도를 실시간·비파괴로 측정하는 데 성공하였다. 이와 더불어 보다 국소한 부위의 OLED 물질 특성 변화를 보다 고감도로 검출하기 위해 테라헤르츠파의 공명 주파수 대역(1.0 THz)에 맞춰 나노 슬롯 구조 (폭 500 nm, 길이 60 μm)의 메타물질 센싱 칩을 제작하였다. 이 칩에 테라헤르츠파를 집속시킨 결과 석영 기판을 이용했을 때와 비교해 mCBP는 53%, mCP는 43%, DPEPO는 31%만큼 향상된 투과율 변화를 나타냈다. KIST 전영민 박사는 “본 연구는 고려대의 OLED 연구경험에 KIST의 테라헤르츠파 분광 기술을 접목하여 OLED 비파괴 검사의 가능성을 제시했다는 점에서 그 의미를 찾을 수 있다”고 밝히면서 “테라헤르츠파의 응용영역을 OLED 디스플레이 결함 검사라는 새로운 분야로 확장할 것”으로 기대했다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 미래원천미래융합기술개발사업, KU-KIST 사업, 한국연구재단 글로벌프론티어사업 및 BK21사업, 범부처 의료기기사업으로 수행되었으며, 연구결과는 재료과학분야의 국제학술지 ‘Applied Surface Science’ (IF:6.707, JCR 상위 2.381%)에 게재되었다. * (논문명) Sensitive non-destructive real-time monitoring of blue OLED materials on extreme surface using terahertz near-field enhancement - (제 1저자) 한국과학기술연구원/고려대학교 정영곤 학생연구원 - (제 1저자) 금오공과대학교 이상훈 교수 - (교신저자) 고려대학교 주병권 교수 - (교신저자) 한국과학기술연구원 서민아 책임연구원 - (교신저자) 한국과학기술연구원 전영민 책임연구원 그림 설명 [그림 1] 성능저하가 잘 일어나는 OLED 청색발광물질 mCBP가 광분해에 의해 파괴되는 과정을 나노슬롯 메타물질 센싱칩을 이용한 테라헤르츠파 분광기술로 측정하는 도식도 [그림 2] 테라헤르츠파 투과율 측정용 분광장치 (좌) 와 이를 이용하여 측정한 OLED 물질의 성능저하(자외선 조사에 의한)를 나타내는 투과율 변화 그래프 (우) [그림 3] 일반 Quartz기판 및 Nano-slot 메타 센싱칩을 이용한 경우의 감쇠시간 측정 그래프. (시료두께 각각 150 nm (좌) 와 50 nm (우))
- 454
- 작성자센서시스템연구센터 전영민·서민아 박사팀
- 작성일2022.05.11
- 조회수13839
-
453
생산성 획기적으로 향상된 CO2→개미산 전환기술 개발
- 기존 상용전극대비 생산량 4배, 반응 내구성 100배 개선 - LOHC 수소 저장체로도 가능성 커 ‘이산화탄소 자원화’와 ‘수소에너지 활용’은 탄소중립 실현의 가장 실질적인 대책으로 주목받고 있다. 하지만, 두 분야 모두 환경 친화적이면서 경제성까지 갖춘 기술이 등장하기 위해서는 획기적인 기술혁신이 반드시 필요한 상황이다. 이런 가운데 국내 연구진이 이산화탄소 자원화와 수소에너지 활용 분야의 시너지 효과를 유발할 수 있는 원천기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 오형석 박사팀이 불소 도핑 산화주석 촉매의 대용량 합성법을 통해 장시간 안정적으로 이산화탄소를 유용한 액상화합물(개미산)로 전환하는 기술을 개발했다고 밝혔다. 개미산은 포름산으로도 불리며 특유의 신맛과 세균억제, 수소이온지수 조절 효과 때문에 식품가공, 보존제, 염색제, 가소제, 제설제, 경화지연제 등 다양한 산업에서 활용되는 기초 화학원료이다. 최근에는 친환경 생분해성 플라스틱의 원료로도 각광을 받고 있기도 하다. 현재 개미산은 대부분 화석연료의 열화학반응을 통해 생산되기 때문에 제조공정상 이산화탄소의 배출이 불가피하다. 전기화학 반응을 통해 이산화탄소를 직접 개미산으로 전환하게 되면 친환경적으로 생산이 가능하지만, 이를 위해 기체상태의 이산화탄소를 액체로 전환하기 위한 액상 전환용 전극 물질의 성능을 높이고 장시간 안정적으로 전극이 구동할 수 있도록 하는 내구성 확보가 필수적이다. KIST 연구진은 불소가 도핑된 산화주석이 일반 산화주석보다 이산화탄소 전환 촉매의 활성을 떨어뜨리는 금속화 경향이 낮다는 사실에 주목했다. 연구진은 주석에 불소를 도핑하는 비교적 간단한 방법으로 높은 개미산 전환 활성을 안정적으로 유지하는 전극을 개발했다. 이러한 방법으로 제작된 불소 도핑 산화주석 전극은 기존 상용 산화주석 전극에 비해 4배 이상 많은 개미산 생산량을 보였고, 일주일 이상의 장시간 반응에도 성능이 잘 유지되어 기존 전극대비 반응내구성이 100배 이상 개선된 것을 확인했다. 한편, 개미산은 수소를 고가의 대형 특수용기가 아닌 제3의 물질과 결합시켜 저장, 수송하는 LOHC(Liquid Organic Hydrogen Carrier)의 수소 저장물질로도 유력한 후보군 가운데 하나이다. LOHC 기술의 핵심이 대용량의 수소를 저장할 수 있고, 외부 자극에 노출되어도 안정성이 유지되는 액상화합물의 확보인데 개미산이 이 같은 특성을 갖고 있기 때문이다. 연구진이 개발한 기술을 적용할 경우 그간 약점으로 여겨졌던 친환경성과 경제성 문제를 한 번에 해결할 수 있어서 암모니아 등 타 후보물질 대비 경쟁력을 재평가 받을 수 있을 것으로 기대된다. KIST 오형석 박사는 “효율이 높은 전극을 개발함으로써 이산화탄소를 이용한 개미산의 대량생산이 지속적으로 가능한 생산 시스템을 구축할 수 있게 됐다.”며, “이산화탄소 포집 및 활용 기술(CCUS)로서의 가능성뿐만 아니라 수소 저장체로도 가능성이 높은 개미산을 대량생산할 수 있는 일석이조의 기술이다. 재생에너지 보급률이 높아지고 수소기반사회가 가속화 될수록 경제성이 충분히 확보될 수 있으며, 향후 국가적 의무인 탄소중립에도 크게 기여할 것으로 기대하고 있다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 ‘KIST 주요사업’, ‘Carbon to X 사업’ 및 국가과학기술연구회(이사장 김복철)의 ‘창의형 융합연구사업’으로 수행되었으며, 연구결과는 저명 국제저널 ‘Nature Communications’ (IF: 14.919, JCR 분야 상위 4.861%) 최신 호에 게재됐다. * (논문명) Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate - (제 1저자, 교신저자) 한국과학기술연구원 고영진 박사 후 연구원 - (제 1저자) 한국과학기술연구원 이웅희 선임연구원 - (교신저자) 한국과학기술연구원 이동기 책임연구원 - (교신저자) 한국과학기술연구원 오형석 책임연구원 그림 설명 [그림1] 불소 도핑 산화주석 촉매가 적용된 CO2 전환 개미산 생산 및 활용 [그림2] 불소 도핑 산화주석과 산화주속의 CO2 전환 반응 중 구조변화 모형 [그림3] 실시간 라만 분광법 측정 장비 모식도 [그림4] 디바이스 조건 실시간 경 X-선 흡수 분석법 모식도
- 452
- 작성자청정에너지연구센터 오형석 박사팀
- 작성일2022.05.04
- 조회수10538
-
451
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
- 450
- 작성자탄소융합소재연구센터 구본철 박사팀
- 작성일2022.05.03
- 조회수11699
-
449
공업용 가습기를 이용한 고내구성 단원자 촉매 개발
- 코발트 기반 단원자 촉매의 작동원리 규명 및 대량생산 공정 개발 - 연료전지, 수전해, 태양전지, 석유화학 등 다양한 분야 촉매개발에 활용 수소전기자동차는 짧은 충전시간과 긴 주행거리 등의 장점을 바탕으로 내연기관차를 대체하는 친환경 이동수단으로 기대된다. 하지만 연료전지 촉매로 사용되는 백금의 높은 단가는 수소전기자동차의 보급을 제한하는 원인이다. 연구 현장에서는 백금을 대체하기 위해 철, 코발트 등 비귀금속계 촉매를 주목하고 있으나 여전히 낮은 성능과 안정성으로 백금의 대체가 어려운 상황이다. 이러한 가운데 한국과학기술연구원 (KIST, 원장 윤석진) 수소·연료전지연구센터 유성종 박사 연구팀이 경희대학교 김진수 교수, 강원대학교 임형규 교수 연구팀과 공동연구를 통해 기존 코발트 나노입자 형태 촉매보다 약 40% 향상된 성능과 안정성을 가진 단원자 코발트 촉매를 제조했다고 밝혔다. 기존 촉매의 경우 전이금속 전구체, 탄소구조체등을 단순 혼합하고 700~1000℃에서 열분해 과정을 통해 만들었다. 이 경우 금속의 뭉침현상, 낮은 비표면적 등으로 활성을 향상하는 데에 한계가 있었다. 이 때문에 학계에서는 단원자 촉매를 주목했으나 기존 보고된 단원자 촉매는 입자 종류에 따라 사용되는 화학물질과 합성법이 달라지기 때문에 소량생산만이 가능했으며 공정보다는 성능향상에 연구가 강조되는 실정이었다. 이를 해결하기 위해 연구진은 공업용 가습기를 이용한 스프레이 열분해법을 도입했다. 스프레이 열분해법은 가습기의 액적(droplet,방울)을 빠르게 열처리하여 액적모양의 입자를 얻는 방법이다. 이 방법은 연속적인 공정으로 대량생산이 가능하고 공업용 가습기를 통해 입자를 만들기 때문에, 물에 잘 녹는 물질을 사용하면 어떠한 금속이라도 입자를 쉽게 제조할 수 있다. 이를 통해 개발한 코발트 탄소 단원자 촉매는 실제 연료전지 구동시 기존대비 40%우수한 연료전지 성능과 함께 안정성 면에서도 탁월한 것을 확인했다. 또한 그동안 코발트 촉매는 연료전지에 부반응을 일으키는 촉매로 보고가 되어 왔는데, 이 방법으로 제조된 촉매는 연료전지에 정반응을 일으키는 촉매임을 계산과학으로 증명했다. KIST 유성종 박사는 “본 연구를 통해 코발트 기반 단원자 촉매를 획기적으로 대량생산할 수 있는 공정이 개발되었고, 면밀한 분석 및 계산과학을 통해 코발트 촉매의 작동원리에 대한 메커니즘을 규명했다. 이번 결과는 향후 코발트계 촉매 연구에 지표가 될 것으로 기대된다.”라며 “향후 연구의 범위를 확장하여 연료전지용 촉매뿐만 아니라 환경촉매, 수전해, 배터리 분야 등 모색할 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 미래원천청정신기술개발 사업과 기후변화대응기술개발사업 및 나노소재기술개발사업으로 수행되었으며, 연구 결과는 에너지·환경 분야 국제학술지 ‘Applied Catalysis B: Environmental’ (IF: 19.503 JCR 분야 상위 0.926%) 최신 호에 게재되었다. * (논문명) Design of Co-NC as efficient electrocatalyst: the unique structure and active site for remarkable durability of proton exchange membrane fuel cells - (제 1저자) 한국과학기술연구원 임경민 박사후연구원, 장주혁 박사후연구원 - (교신저자) 한국과학기술연구원 유성종 책임연구원, 경희대학교 김진수 교수, 강원대학교 임형규 교수 그림 설명 [그림 1] (a) 가습기공정을 이용한 단원자촉매 합성과정 단원자 촉매의 (b) SEM 이미지 (c) 코발트 원소 맵핑 이미지 (d) 고해상도 TEM 이미지 [그림 2] (좌) 100시간 평가 후 촉매 성능 감소율과 금속 용해율 (우) 기존 코발트 및 철 계열 촉매 문헌과의 비교
- 448
- 작성자수소·연료전지연구센터 유성종 박사팀
- 작성일2022.05.02
- 조회수6887
-
447
초박막 전극 신소재 개발, 차세대 반도체 활용에 한 걸음 다가서다
- 페르미준위 고정현상 해결하여 2차원 반도체 소자 성능 획기적으로 높여 - 인공지능시스템의 소형화 등 차세대 시스템 기술의 상용화를 앞당길 것으로 기대 영화에서만 주로 볼 수 있었던 인공지능시스템, 자율주행 시스템을 일상생활 속에서 실현하기 위해서는 컴퓨터의 두뇌 역할을 하는 프로세서가 더 많은 데이터를 처리할 수 있어야 한다. 그러나 컴퓨터 프로세서의 필수 부품인 실리콘 기반 논리 소자는 미세화·집적화가 심화되면서 공정비용과 전력 소모가 증가하는 한계가 있었다. 이러한 한계를 극복하기 위해 원자층 수준으로 매우 얇은 2차원 반도체에 기반한 전자소자 및 논리 소자 연구가 진행되고 있다. 그러나 2차원 반도체는 기존 실리콘 반도체 소자보다 도핑을 통한 전기적 특성 제어가 어려우므로 다양한 논리회로를 구현하기가 기술적으로 어려웠다. 한국과학기술연구원 (KIST, 원장 윤석진)은 광전소재연구단 황도경 박사와 군산대학교 (총장 이장호) 물리학과 이기문 교수 공동 연구팀이 새로운 초박막 전극 소재(Cl-SnSe2)를 개발함으로써 전기적 특성을 자유자재로 제어할 수 있는 2차원 반도체 기반 전자소자 및 논리소자를 구현하는 데 성공했다고 밝혔다. 연구팀은 2차원 전극 물질인 Cl이 도핑된 셀렌늄화주석 (Cl-SnSe2)을 이용하여 반도체 전자소자의 전기적 특성을 선택적으로 제어할 수 있었다. 기존 2차원 반도체 소자는 페르미준위 고정현상으로 인해 N형 또는 P형 소자 중 하나의 특성만 보여 상보성 논리회로 구현이 어려웠다. 반면 연구팀이 개발한 전극 소재를 이용하면 반도체 계면과의 결함을 최소화하여 N형과 P형 소자 특성을 자유자재로 제어할 수 있다. 즉, N형, P형 소자를 별도로 제작할 필요 없이 하나의 소자에서 두 가지 기능을 모두 수행하는 것이다. 연구팀은 이렇게 개발한 소자를 통해 NOR(노어), NAND(낸드) 등 서로 다른 논리 연산이 가능한 고성능·저전력 상보성 논리회로를 구현하는 데 성공했다. KIST 황도경 박사는 “기존 실리콘 반도체 소자의 미세화·고집적화로 인해 발생하는 기술적 한계로 실용화가 어려웠던 인공지능시스템 등 차세대 시스템 기술의 산업화를 앞당기는데 기여할 것”이라며, “개발된 2차원 전극 소재는 두께가 매우 얇아 높은 광 투과성과 유연성을 보여 차세대 유연·투명 반도체 소자에도 활용될 수 있을 것”이라 기대했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요사업, 나노및소재기술개발사업 및 정보통신방송기술개발사업으로 수행되었으며, 연구 결과는 국제학술지 ‘Advanced Materials’(IF : 30.849)에 게재되었다. * (논문명) Fermi-Level Pinning-Free WSe2 Transistors via 2D Van der Waals Metal Contacts and Their Circuits - (제 1저자) 한국과학기술연구원 장지수 학생연구원 - (제 1저자) 한국과학기술연구원 나현수 박사후연구원 - (교신저자) 군산대학교 이기문 교수 - (교신저자) 한국과학기술연구원 황도경 책임연구원? 그림 설명 [그림 1] 본 연구진이 구현한 이차원 반도체 소자 및 논리 소자의 동작 결과. [그림 2] 본 연구에서 구현된 2차원 반도체 전자 소자의 구조와 전자 현미경 사진. 전극과 반도체 계면에서 결함이 없음을 확인할 수 있음.
- 446
- 작성자광전소재연구단 황도경 박사팀
- 작성일2022.04.28
- 조회수9545