Result
게시물 키워드"KIST"에 대한 4645개의 검색결과를 찾았습니다.
니켈 저감으로 안정성 높인 세라믹 연료전지, 성능도 1.5배 UP
- 박막 증착 기술로 니켈 촉매 나노구조화 및 기존 대비 함량 1/20 저감 성공 - 니켈의 산화-환원 파괴를 억제, 세라믹 연료전지의 안정성과 고성능 모두 확보 국내 연구진이 촉매량은 1/20로 줄이면서 안정성과 고성능을 모두 확보한 세라믹 연료전지를 개발하였다. 이에 따라 잦은 시동이 어려운 탓에 대형 발전용으로만 활용이 가능했던 세라믹 연료전지의 응용 범위가 새로운 분야로 확대될 수 있을 것으로 기대된다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지소재연구단 손지원 박사팀이 한국과학기술원(KAIST, 총장 신성철) 한승민 교수와 공동연구를 통해 박막 기술을 이용하여 수소연료가 주입되는 전극인 연료극의 니켈 촉매의 양과 크기를 대폭 줄임으로써 세라믹 연료전지 파괴의 주요한 원인인 산화-환원 사이클에 따른 파괴를 억제한 신개념 기술을 개발했다고 밝혔다. 고온형 연료전지의 대표 격인 세라믹 연료전지는 통상 800℃ 이상의 고온 작동이 특징이다. 이 덕분에 활성도가 높아, 저온형 연료전지인 고분자전해질 연료전지가 고가의 고활성 백금 촉매를 사용하는 것과 달리, 니켈과 같은 저렴한 촉매를 사용할 수 있다. 하지만, 연료극의 약 부피 기준 40%를 구성하는 니켈이 고온의 작동조건에서 서로 만나 응집된 후 반복적인 정지-재가동으로 인한 산화와 환원 과정에 노출되면, 니켈이 팽창, 수축하여 세라믹 연료전지 전체 구조의 파괴로 이어져 여러 차례 재가동할 수 없는 치명적인 단점은 세라믹 연료전지를 대형 발전 외의 용도로는 사용하기 어렵게 했다. KIST 손지원 박사팀은 이런 문제를 연료극의 니켈 입자가 서로 만나 응집하지 않도록 니켈 함량을 기존 연료극 대비 1/20 수준인 2%까지 줄인 신개념 연료전지를 개발하였다. 니켈 촉매 크기를 나노미터 수준으로 작게 만들어 표면적을 키워 촉매 함량이 줄어든 것을 보완하고, 박막 공정을 통해 크기와 함량이 아주 작은 촉매를 연료극 박막층에 고르게 분포시켜 니켈 입자가 서로 만나 응집하지 못하도록 했다. 이렇게 개발된 신개념 연료극을 연료전지에 적용하여 운전한 결과, 20회 미만의 산화-환원 사이클에도 파괴되던 기존 세라믹 연료전지보다 5배 이상 안정적인 100회를 넘는 사이클에도 전극의 파괴나 성능의 저하가 없었다. 더욱이 니켈 함량의 감소로 우려되었던 세라믹 연료전지의 성능은 니켈 입자의 나노화로 오히려 기존 기술 대비 1.5배가량 향상되어 안정성과 성능 모두 획기적인 진전을 얻었다. 손지원 박사는 “이번 연구 결과는 세라믹 연료전지 파괴의 주요 원인인 연료극의 니켈 응집과 산화-환원에 따른 파괴를 효과적으로 억제할 수 있는 신개념 전극구조를 디자인하고 제작-평가까지 체계적으로 연구한 것”이라며 “세라믹 연료전지의 안정성과 성능을 동시에 획득하여 작동수명을 향상시키고 다양한 수송 및 이동용 연료전지로 응용 범위를 확장할 가능성을 확인했다”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 주요사업 및 한국연구재단 글로벌프론티어사업, 중견연구자지원사업으로 수행되었다. 연구결과는 금속재료공학 분야의 최상위 국제학술지 ‘Acta Materialia’ (IF : 7.656, JCR 분야 상위 : 0.633%)에 게재되었다. * (논문명) A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells - (제 1저자) 한국과학기술연구원 박정훈 박사 - (교신저자) 한국과학기술연구원 손지원 책임연구원 - (교신저자) 한국과학기술원 한승민 교수 <그림설명> [그림 1] 세라믹 연료전지의 산화-환원 사이클 개념도와 이에 따른 신개념 대 기존 연료극의 열화율 비교 [그림 2] 신개념 低니켈함량 연료극(왼쪽)과 기존 高니켈함량 연료극(오른쪽)의 산화-환원 사이클 후 미세구조 비교. 신개념 연료극은 초기 구조가 유지되었으나, 기존 연료극에서는 니켈이 크게 뭉치고 기저상이 파괴된 상태를 확인할 수 있다. [그림 3] 신개념 低니켈함량 연료극과 기존 高니켈함량 연료극을 사용한 박막 SOFC의 출력성능 비교
[답변] 재직증명서 발급 문의
안녕하세요, 문의주신 재직증명서와 관련하여 아래와 같이 답변드립니다. 증명서 발급은 개인의 직급에 따라 발급되는 부서가 나뉩니다. - 인사경영팀 : 정직원, 별정직, 인턴, Post-Doc. - 학연운영팀 : 학연생, 연수생 - KIST스쿨 : 연합대생 아래 링크의 첨부된 신청서를 위 부서의 분류에 맞게 메일 발송해 주시면 되십니다. 링크 : https://www.kist.re.kr/kist_web/?state=view&sub_num=4088&searchKind=&searchWord=&v_pagesize=10&v_page=1&idx=8443&seqNo=2&reportMediaTypeCode= 감사합니다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.
머리속 해마의 길찾기 전략을 엿보다
- 단순·복잡 유형별 동물실험으로 장소세포의 변화상 관측 - 알츠하이머·기억상실 등 뇌질환 치료, AI 고도화 새로운 방향 제시 우리가 길을 찾거나 특별한 장소를 기억하는 것은 뇌 속 어딘가 GPS와 네비게이션 기능을 하는 영역이 존재하기 때문이다. 처음 가는 곳은 경로상의 지형지물에 촉각을 곤두세우지만, 차츰 별다른 신경을 쓰지 않고도 쉽게 찾아가는 것 역시 이런 위치추적 시스템 덕분이다. 과학자들은 그간 다양한 포유류 실험을 통해 뇌 속 해마의 장소세포가 공간 지각능력을 담당한다는 사실을 알게 됐다. 하지만 위치와 공간의 장기기억을 형성하고 저장하는 장소세포가 특정 장소에서 어떻게 활성화되는지는 밝혀진 바가 없었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 세바스쳔 로열 박사팀이 해마의 장소세포가 장소에 대한 정보를 마치 바코드(bar code)처럼 빈도코드(rate code)와 위상코드(phase code)를 이용하여 저장한다는 사실을 발견했다. 또한, 경로상의 지형비물이 복잡한지 단순한지에 따라 장소세포의 활성화 영역과 사용전략이 달라지는 병렬적 정보처리 메커니즘을 갖고 있음을 규명했다고 밝혔다. KIST 연구진은 두 가지 유형의 공간 실험을 통해 해마의 장기기억 형성과 활성화 기초 원리를 확인했다. 첫 번째로 공간훈련 장치인 트레드밀의 긴 벨트에 빈 구간과 작은 물체들이 산재한 구간을 만들어 쥐가 순차적으로 달리도록 훈련했고, 두 번째는 원형의 통에 물체들을 배치하거나 완전히 비우는 방식으로 진행됐다. 그동안 공간 기억 형성에 중요한 역할을 한다고 추측되지만, 구체적인 기능을 파악하지 못하고 있던 해마의 소영역인 CA1 과 CA3에 실리콘 탐침 전극을 심어 신경세포의 활성도를 분석했다. 두 실험에서 유사한 결과를 얻을 수 있었는데 해마는 공간·위치·물체의 상황과 환경 조건에 따라 서로 다른 뇌 영역과 별개의 입력장치 및 정보처리 전략을 사용하고 있는 것이 관찰됐다. 물체가 없는 단순한 환경에서는 CA1 표면에서 하나의 신경세포가 활동전위를 발동시키는 빈도수를 공간과 위치정보와 매칭하여 저장하는 ‘빈도코드(rate code)’를 사용하는 세포 집단이 활성화되는 경향이 나타났다. 반대로 물체가 많은 복잡한 환경에서는 CA1 심층부의 활성도가 높아지면서 정보처리에 여러 신경세포들 사이의 시간간격들을 함께 저장하는 위상코드(phase code)가 주로 활용되는 것이 관측됐다. 이는 포괄적인 위치와 공간 감각을 제공해야 할 때는 빈도코드가, 물체의 정확한 위치 및 공간과의 관계를 기억하는 데는 위상코드가 더 많이 연관되어 있음을 시사한다. 이와 함께 CA3 영역의 기능도 파악됐다. CA3는 내후각 피질과 함께 CA1에 정보를 입력하는 역할을 하는 것으로 예상되고 있었는데, 이번 연구를 통해 단순한 환경에서는 주로 CA3가, 복잡한 환경에서는 내후각 피질 영역이 CA1에 정보를 제공하고 있었음을 알게된 것이다. KIST 세바스쳔 로열 박사는 “이번 연구를 통해 해마가 어떻게 정보를 처리하는지를 이해할 수 있으며, 이것은 기억의 기초 원리를 보다 심층적으로 밝히는 토대가 될 것”이라며 “알츠하이머성 치매, 기억상실, 인지장애 같은 해마 손상 관련 뇌질환을 치료 및 진단하는 기술과 함께 생물학적 데이터 기반의 인공지능 발전에도 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 한편, 세바스쳔 로열 박사팀은 다양한 실험을 통해 기억 관련 뇌 영역의 정보 획득 및 분석 방식에 대한 이해를 단계적으로 확장해가고 있다. 지난해 10월에는 해마 속 과립세포(granule cell)가 이끼세포(mossy cell) 등 다양한 신경 네트워크를 통해 장소를 학습하며 장소세포로 변하는 과정을 마우스 실험과 시뮬레이션으로 규명한 바 있다.(Nature Communications volume 11, Article number: 4550 (2020)) 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업을 통해 수행되었으며, 연구 결과는 국제학술지인 ‘Neuron’(IF : 14.415, JCR분야 상위 2.022%) 최신 호에 게재되었다. * (논문명) Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments - (제 1저자) 한국과학기술연구원 Farnaz Sharif 학생연구원 - (교신저자) 한국과학기술연구원 Sebastien Royer 책임연구원 - (교신저자) New York University Antonio Fernandez-Ruiz 박사 <그림설명> [그림 1] 해마 영역 세포 CA1의 빈도 및 위상 코드 사용 여부를 확인하기 위한 트레드밀 실험 [그림 2] 물체를 완전히 비우거나(좌) 배치한(우) 원형의 통을 이동할 때 CA1 장소세포의 활성 정도 [그림 3] 트레드밀 실험 중 세포 활동 기록. 물체가 풍부한 환경은 위상 코드를 통해 깊은 층의 CA1 세포 집단에 의해 부호화되고, 비어 있는 환경은 빈도 코드를 통해 표피 상의 CA1 세포 집단에 의해 부호화되는 경향이 나타난다.