Result
게시물 키워드"KIST"에 대한 4646개의 검색결과를 찾았습니다.
생생한 시각 정보 전달, 다양한 신경 신호가 핵심!
- 신호의 다양성을 낮추면 극심한 신경 정보 손실 발생 - 자극 방법 최적화로 다양성을 높이면 풍부한 시각 정보 표현할 인공 시각 구현 우리가 사물을 시각적으로 인지하는 것은 안구의 신경 조직인 망막에서 시작된다. 망막에서는 1억 개가 넘는 광수용체 세포가 빛을 검출하고, 1백만 개가 넘는 시신경 세포가 신경 신호를 압축하여 뇌로 전달하여 시각을 형성한다. 시력을 잃어가고 있는 배우 송승환씨 등을 통해 알려진 망막 색소 변성 및 노인성 황반 변성 등의 질환에서는 살아남은 망막 신경 세포들을 전기적으로 자극하는 인공 망막 장치가 유일한 시력 회복 방법이다. 하지만, 정상 시각 대비 현저히 떨어지는 인공 시각의 품질을 획기적으로 개선하는 것이 큰 과제로 남아 있다. 한국과학기술연구원(KIST, 원장 윤석진) 뇌과학연구소 임매순 박사팀은 서로 다른 시신경 세포의 높은 신호 다양성이 고효율 시각 정보 전달을 위한 핵심 요소임을 확인했다고 밝혔다. 인공 시각 분야에서 응용 가능성이 클 것으로 전망된다. KIST 연구진은 토끼 망막 신경 세포에서 얻어진 신경 신호에 계산신경과학 및 정보이론을 적용하여 시각 정보 전달을 정량화하였다. 특히, 신경 신호의 여러 특징 중 다양성을 주목한 연구팀은 서로 다른 세포들 간의 정보 패턴의 다양성이 높을수록 정보량이 증가하는 것을 확인하였다. 그와 동시에 정보 전달 과정에서 오류를 방지하기 위해 다양성을 일정 수준 낮추고 어느 정도의 중복성을 허용한다는 사실도 확인하였다. KIST 연구진은 전기 자극 실험을 통해 정상 망막과 인공 망막 장치의 시각 정보 전달 방식을 비교한 결과, 놀랍게도 임상 시험에서 인공 망막 사용자들이 보다 쉽게 인지하는 반응에 관여한 세포들이 더 높은 신경 신호 다양성을 보여주었다. 반면에 임상 시험에서 잘 인지되지 않던 반응을 담당하는 세포들은 정상적인 빛 자극에서 보였던 세포 간 신호의 다양성이 사라지고, 전기 자극에 대해 매우 균일한 신경 신호를 생성하였다. 이러한 신경 신호 다양성 상실은 전달되는 시각 정보의 극심한 감소로 이어졌으며, 정보 부족으로 인해 인공 망막 장치 사용자의 뇌에서 해석하기 어려운 것으로 이해된다. 한편, 임매순 박사는 망막 변성이 진행된 생쥐들을 연구한 결과, 각 시신경 세포가 전달하는 신호의 일관성이 안정적인 시각 인지에 중요한 요소임을 밝힌 바 있다.(※IEEE TNSRE, vol. 28, no. 9, pp. 1921-1930, Sept. 2020) KIST 강준호 박사는 “신경 세포들을 단순히 자극하는 것만으로는 매우 복잡한 시각 정보를 성공적으로 구현하기 어렵다는 것을 의미한다. 서로 다른 세포들이 각기 다른 신경 신호를 만들면 고품질 인공 시각 구현이 가능할 것으로 보인다.”라고 말했으며, 임매순 박사는 “작년 연구 내용과 종합하면, 서로 다른 시신경 세포들이 다양한 신경 신호를 일관되게 전달해야 우리의 머릿속에서 생생한 시각 정보를 안정적으로 인지하게 되는 것으로 보인다.”라며, “본 연구를 통해 인공 시각 뿐 아니라 다양한 분야에서 뇌 기능을 제어하기 위해서는 단순히 신경 신호를 형성하는 것에 머무르지 않고 복잡한 신경 네트워크의 신호 다양성을 모사할 수 있도록 노력해야 한다는 것을 알게 됐다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 신진연구자지원사업으로 수행되었으며, 연구 결과는 ‘IEEE Transactions on Neural Systems and Rehabilitation Engineering’ 최신호에 게재되었다. * (논문명) Electric stimulation elicits heterogeneous responses in ON but not OFF retinal ganglion cells to transmit rich neural information - (제 1저자) 한국과학기술연구원 강준호 위촉연구원 - (교신저자) 한국과학기술연구원 임매순 선임연구원 <그림설명> [그림 1] 망막 신경 신호 다양성과 뇌의 시각 피질 활성화 개념도 단조로운 (다양성 낮은 균일한) 신경신호는 전달할 수 있는 정보가 제한적이기에 시각 피질의 활성화가 적은 반면, 다양한 신경 신호는 보다 많은 정보를 전달하여 시각 피질의 활성화를 증가시킴 [그림 2] 빛 자극(위)과 전기 자극(아래) 후 신경 신호 일관성 변화 및 정보 전달 분석결과 - 동일 빛 또는 전기 자극에 대해 서로 다른 신경 세포의 신경 신호의 서로 비슷한 정도(Correlation) STTC(Spike Time Tiling Coefficient) 값을 계산하여 비교 분석함 - STTC 값 그래프에서는 붉은색이 많을수록 신경 신호 다양성이 낮고, 알록달록해질수록 다양성이 높아짐을 의미함. - 각 세포 종류별로 각각 빛과 전기 자극 인가 후 발생한 신경 신호에서 전달되는 시각 정보의 총량을 계산하여, 밝은 것을 표현하는 ON 세포의 경우 전기 자극에 의해서도 빛 자극과 비슷한 신경 신호 다양성을 유지하지만, 어두운 것을 표현하는 OFF 세포의 경우 전기 자극으로 발생하는 신경 신호의 다양성이 현저하게 낮아 전달되는 시각 정보 손실이 큰 것을 확인함. 이는 임상 시험에서 어두운 것보다 밝은 것을 잘 인지했던 것을 설명함
생생한 시각 정보 전달, 다양한 신경 신호가 핵심!
- 신호의 다양성을 낮추면 극심한 신경 정보 손실 발생 - 자극 방법 최적화로 다양성을 높이면 풍부한 시각 정보 표현할 인공 시각 구현 우리가 사물을 시각적으로 인지하는 것은 안구의 신경 조직인 망막에서 시작된다. 망막에서는 1억 개가 넘는 광수용체 세포가 빛을 검출하고, 1백만 개가 넘는 시신경 세포가 신경 신호를 압축하여 뇌로 전달하여 시각을 형성한다. 시력을 잃어가고 있는 배우 송승환씨 등을 통해 알려진 망막 색소 변성 및 노인성 황반 변성 등의 질환에서는 살아남은 망막 신경 세포들을 전기적으로 자극하는 인공 망막 장치가 유일한 시력 회복 방법이다. 하지만, 정상 시각 대비 현저히 떨어지는 인공 시각의 품질을 획기적으로 개선하는 것이 큰 과제로 남아 있다. 한국과학기술연구원(KIST, 원장 윤석진) 뇌과학연구소 임매순 박사팀은 서로 다른 시신경 세포의 높은 신호 다양성이 고효율 시각 정보 전달을 위한 핵심 요소임을 확인했다고 밝혔다. 인공 시각 분야에서 응용 가능성이 클 것으로 전망된다. KIST 연구진은 토끼 망막 신경 세포에서 얻어진 신경 신호에 계산신경과학 및 정보이론을 적용하여 시각 정보 전달을 정량화하였다. 특히, 신경 신호의 여러 특징 중 다양성을 주목한 연구팀은 서로 다른 세포들 간의 정보 패턴의 다양성이 높을수록 정보량이 증가하는 것을 확인하였다. 그와 동시에 정보 전달 과정에서 오류를 방지하기 위해 다양성을 일정 수준 낮추고 어느 정도의 중복성을 허용한다는 사실도 확인하였다. KIST 연구진은 전기 자극 실험을 통해 정상 망막과 인공 망막 장치의 시각 정보 전달 방식을 비교한 결과, 놀랍게도 임상 시험에서 인공 망막 사용자들이 보다 쉽게 인지하는 반응에 관여한 세포들이 더 높은 신경 신호 다양성을 보여주었다. 반면에 임상 시험에서 잘 인지되지 않던 반응을 담당하는 세포들은 정상적인 빛 자극에서 보였던 세포 간 신호의 다양성이 사라지고, 전기 자극에 대해 매우 균일한 신경 신호를 생성하였다. 이러한 신경 신호 다양성 상실은 전달되는 시각 정보의 극심한 감소로 이어졌으며, 정보 부족으로 인해 인공 망막 장치 사용자의 뇌에서 해석하기 어려운 것으로 이해된다. 한편, 임매순 박사는 망막 변성이 진행된 생쥐들을 연구한 결과, 각 시신경 세포가 전달하는 신호의 일관성이 안정적인 시각 인지에 중요한 요소임을 밝힌 바 있다.(※IEEE TNSRE, vol. 28, no. 9, pp. 1921-1930, Sept. 2020) KIST 강준호 박사는 “신경 세포들을 단순히 자극하는 것만으로는 매우 복잡한 시각 정보를 성공적으로 구현하기 어렵다는 것을 의미한다. 서로 다른 세포들이 각기 다른 신경 신호를 만들면 고품질 인공 시각 구현이 가능할 것으로 보인다.”라고 말했으며, 임매순 박사는 “작년 연구 내용과 종합하면, 서로 다른 시신경 세포들이 다양한 신경 신호를 일관되게 전달해야 우리의 머릿속에서 생생한 시각 정보를 안정적으로 인지하게 되는 것으로 보인다.”라며, “본 연구를 통해 인공 시각 뿐 아니라 다양한 분야에서 뇌 기능을 제어하기 위해서는 단순히 신경 신호를 형성하는 것에 머무르지 않고 복잡한 신경 네트워크의 신호 다양성을 모사할 수 있도록 노력해야 한다는 것을 알게 됐다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 신진연구자지원사업으로 수행되었으며, 연구 결과는 ‘IEEE Transactions on Neural Systems and Rehabilitation Engineering’ 최신호에 게재되었다. * (논문명) Electric stimulation elicits heterogeneous responses in ON but not OFF retinal ganglion cells to transmit rich neural information - (제 1저자) 한국과학기술연구원 강준호 위촉연구원 - (교신저자) 한국과학기술연구원 임매순 선임연구원 <그림설명> [그림 1] 망막 신경 신호 다양성과 뇌의 시각 피질 활성화 개념도 단조로운 (다양성 낮은 균일한) 신경신호는 전달할 수 있는 정보가 제한적이기에 시각 피질의 활성화가 적은 반면, 다양한 신경 신호는 보다 많은 정보를 전달하여 시각 피질의 활성화를 증가시킴 [그림 2] 빛 자극(위)과 전기 자극(아래) 후 신경 신호 일관성 변화 및 정보 전달 분석결과 - 동일 빛 또는 전기 자극에 대해 서로 다른 신경 세포의 신경 신호의 서로 비슷한 정도(Correlation) STTC(Spike Time Tiling Coefficient) 값을 계산하여 비교 분석함 - STTC 값 그래프에서는 붉은색이 많을수록 신경 신호 다양성이 낮고, 알록달록해질수록 다양성이 높아짐을 의미함. - 각 세포 종류별로 각각 빛과 전기 자극 인가 후 발생한 신경 신호에서 전달되는 시각 정보의 총량을 계산하여, 밝은 것을 표현하는 ON 세포의 경우 전기 자극에 의해서도 빛 자극과 비슷한 신경 신호 다양성을 유지하지만, 어두운 것을 표현하는 OFF 세포의 경우 전기 자극으로 발생하는 신경 신호의 다양성이 현저하게 낮아 전달되는 시각 정보 손실이 큰 것을 확인함. 이는 임상 시험에서 어두운 것보다 밝은 것을 잘 인지했던 것을 설명함
[답변] 증명서 발급건
안녕하세요, 문의주신 내용과 관련하여 아래와 같이 답변드립니다. 증명서 발급의 건은 아래 링크를 통해 상세정보 확인 가능하십니다. 요건에 맞는 확인후, 첨부의 신청서를 작성하시어 관련 부서로 제출 해주시면 도와드릴 수 있도록 하겠습니다. 감사합니다. 증명서 발급 내용보기 : https://www.kist.re.kr/kist_web/?state=view&sub_num=4088&searchKind=&searchWord=&v_pagesize=10&v_page=1&idx=8443&seqNo=1&reportMediaTypeCode=
USB
12월까지 학연생이였던 조준형입니다. 문의드렸었지만, 제가 윈도우 재설치나 KIST방문이 어려워서 보안프로그램 삭제가 안되는 상태인데 usb에 파일을 넣을 방법이나 프로그램이 있는지 궁금합니다. 보안프로그램때문에 usb에 파일이 복사가 안돼서 곤란한 상태입니다.
인공 뇌 신호 분석해서 뇌 지도 제작한다
- 평면형태의 뇌 신호만 측정할 수 있던 기술의 한계 극복 - 인간 세포 기반 인공 뇌에 적용 가능한 새로운 뇌 질환 치료제 평가 방법 제시 우리 뇌는 다른 장기와는 달리 두껍고 단단한 두개골로 덮여 있어 접근이 어려워 해상도가 낮은 영상 기반이나 두개골 밖에서 측정하는 뇌파 분석 등으로 연구 방법이 한정되어 있었다. 이로 인해 뇌의 발달 단계에서 일어나는 다양한 현상이나 장애의 원인, 그리고 그 치료기술을 개발하는 연구에도 한계가 있었다. 최근에는 쥐에서 추출된 신경세포나 인간 유래의 유도만능줄기세포(iPSC)를 이용하여 인공 뇌를 구현하고, 이를 이용하여 뇌 발달 과정을 연구하거나 뇌 질환의 원인을 규명하는 연구가 뇌의 신비를 풀어 줄 열쇠로 주목을 받고 있다. 과거 인공 뇌는 평면 형태로 제작하여 연구해왔는데, 입체적인 실제 뇌와의 괴리를 줄이기 위해 3차원(3D) 형태의 입체적인 인공 뇌가 2017년 KIST 연구팀에 의해 개발된 바 있다. 하지만, 3D 인공 뇌의 신호를 연구하기 위한 분석 툴은 개발되지 않아, 표면에서의 신호만 분석하거나 입체 구조를 평면 형태로 무너뜨려 연구해야 해서 복잡하게 얽혀진 인공 신경망에서의 신경 신호 추적에 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 조일주, 최낙원 박사팀이 입체 형태의 인공 뇌 회로를 망가뜨리지 않고 정밀하게 자극하고 세포 단위의 신경 신호를 내부의 여러 곳에서 실시간으로 측정할 수 있는 초소형 분석 시스템을 개발했다고 밝혔다. 연구진이 개발한 3차원 다기능 신경 신호 측정 시스템은 머리카락 절반 정도인 50㎛ 두께의 실리콘 탐침 어레이에 63개의 침 형태의 전극을 집적한 형태로, 인공 뇌에 꽂아 뇌 신경망 회로 내부 여러 곳의 신호를 동시에 측정할 수 있다. 탐침 내부에는 광섬유와 약물 전달 채널이 집적되어 있어 뇌 세포를 빛이나 약물로 정밀하게 자극하여 자극에 반응하는 인공 뇌 회로의 기능 변화를 측정함으로써, 인공 뇌를 이용한 뇌 기능 및 질환 연구를 가능하게 하였다. 연구팀은 개발된 시스템을 이용하여 인공 뇌의 뇌세포를 빛으로 자극하고 이에 반응하여 전파되는 신호를 여러 곳에서 동시에 측정하여 뇌 신호의 전파속도가 뇌세포 부위별로 다름을 밝혀내었다. 뇌지도를 작성함에 있어 전자현미경을 통해 제작할 수 있는 구조적 뇌 지도뿐만 아니라 복잡한 인공 뇌 회로망 내에서 뇌 회로가 어떻게 기능적으로 연결되어 있는지를 보여주는 3차원 기능적 뇌지도를 작성할 수 있는 가능성을 확인했다. KIST 최낙원 박사는 “개발한 시스템을 통해서 다양한 뇌 발달 장애와 뇌 질환의 원인 및 치료 방법 등을 연구할 수 있게 되었다.”라고 말했다. 공동 연구책임자인 조일주 박사는 “기존에는 불가능하였던 3차원의 인공 뇌 기능 측정을 가능하게 하는 시스템 개발로 다양한 뇌 질환 치료제 개발 기간을 획기적으로 단축할 수 있는 역할을 할 수 있을 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단의 미래뇌융합기술개발사업으로 수행되었으며, 이번 연구 결과는 ‘Nature Communications’ (IF: 12.121) 최신 호에 게재되었다. * (논문명) 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics - (제 1저자) 한국과학기술연구원 신효근 학생연구원 - (교신저자) 한국과학기술연구원 최낙원 책임연구원 - (교신저자) 한국과학기술연구원 조일주 책임연구원 <그림설명> [그림 1] 3D 인공 뇌 회로와 자극 및 신경 신호 측정을 위한 3차원 다기능 전극 어레이 [그림 2] KIST 연구진이 제작한 3차원 인공 뇌 회로 측정용 다기능 3D 전극 어레이
인공 뇌 신호 분석해서 뇌 지도 제작한다
- 평면형태의 뇌 신호만 측정할 수 있던 기술의 한계 극복 - 인간 세포 기반 인공 뇌에 적용 가능한 새로운 뇌 질환 치료제 평가 방법 제시 우리 뇌는 다른 장기와는 달리 두껍고 단단한 두개골로 덮여 있어 접근이 어려워 해상도가 낮은 영상 기반이나 두개골 밖에서 측정하는 뇌파 분석 등으로 연구 방법이 한정되어 있었다. 이로 인해 뇌의 발달 단계에서 일어나는 다양한 현상이나 장애의 원인, 그리고 그 치료기술을 개발하는 연구에도 한계가 있었다. 최근에는 쥐에서 추출된 신경세포나 인간 유래의 유도만능줄기세포(iPSC)를 이용하여 인공 뇌를 구현하고, 이를 이용하여 뇌 발달 과정을 연구하거나 뇌 질환의 원인을 규명하는 연구가 뇌의 신비를 풀어 줄 열쇠로 주목을 받고 있다. 과거 인공 뇌는 평면 형태로 제작하여 연구해왔는데, 입체적인 실제 뇌와의 괴리를 줄이기 위해 3차원(3D) 형태의 입체적인 인공 뇌가 2017년 KIST 연구팀에 의해 개발된 바 있다. 하지만, 3D 인공 뇌의 신호를 연구하기 위한 분석 툴은 개발되지 않아, 표면에서의 신호만 분석하거나 입체 구조를 평면 형태로 무너뜨려 연구해야 해서 복잡하게 얽혀진 인공 신경망에서의 신경 신호 추적에 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 조일주, 최낙원 박사팀이 입체 형태의 인공 뇌 회로를 망가뜨리지 않고 정밀하게 자극하고 세포 단위의 신경 신호를 내부의 여러 곳에서 실시간으로 측정할 수 있는 초소형 분석 시스템을 개발했다고 밝혔다. 연구진이 개발한 3차원 다기능 신경 신호 측정 시스템은 머리카락 절반 정도인 50㎛ 두께의 실리콘 탐침 어레이에 63개의 침 형태의 전극을 집적한 형태로, 인공 뇌에 꽂아 뇌 신경망 회로 내부 여러 곳의 신호를 동시에 측정할 수 있다. 탐침 내부에는 광섬유와 약물 전달 채널이 집적되어 있어 뇌 세포를 빛이나 약물로 정밀하게 자극하여 자극에 반응하는 인공 뇌 회로의 기능 변화를 측정함으로써, 인공 뇌를 이용한 뇌 기능 및 질환 연구를 가능하게 하였다. 연구팀은 개발된 시스템을 이용하여 인공 뇌의 뇌세포를 빛으로 자극하고 이에 반응하여 전파되는 신호를 여러 곳에서 동시에 측정하여 뇌 신호의 전파속도가 뇌세포 부위별로 다름을 밝혀내었다. 뇌지도를 작성함에 있어 전자현미경을 통해 제작할 수 있는 구조적 뇌 지도뿐만 아니라 복잡한 인공 뇌 회로망 내에서 뇌 회로가 어떻게 기능적으로 연결되어 있는지를 보여주는 3차원 기능적 뇌지도를 작성할 수 있는 가능성을 확인했다. KIST 최낙원 박사는 “개발한 시스템을 통해서 다양한 뇌 발달 장애와 뇌 질환의 원인 및 치료 방법 등을 연구할 수 있게 되었다.”라고 말했다. 공동 연구책임자인 조일주 박사는 “기존에는 불가능하였던 3차원의 인공 뇌 기능 측정을 가능하게 하는 시스템 개발로 다양한 뇌 질환 치료제 개발 기간을 획기적으로 단축할 수 있는 역할을 할 수 있을 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단의 미래뇌융합기술개발사업으로 수행되었으며, 이번 연구 결과는 ‘Nature Communications’ (IF: 12.121) 최신 호에 게재되었다. * (논문명) 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics - (제 1저자) 한국과학기술연구원 신효근 학생연구원 - (교신저자) 한국과학기술연구원 최낙원 책임연구원 - (교신저자) 한국과학기술연구원 조일주 책임연구원 <그림설명> [그림 1] 3D 인공 뇌 회로와 자극 및 신경 신호 측정을 위한 3차원 다기능 전극 어레이 [그림 2] KIST 연구진이 제작한 3차원 인공 뇌 회로 측정용 다기능 3D 전극 어레이
인공 뇌 신호 분석해서 뇌 지도 제작한다
- 평면형태의 뇌 신호만 측정할 수 있던 기술의 한계 극복 - 인간 세포 기반 인공 뇌에 적용 가능한 새로운 뇌 질환 치료제 평가 방법 제시 우리 뇌는 다른 장기와는 달리 두껍고 단단한 두개골로 덮여 있어 접근이 어려워 해상도가 낮은 영상 기반이나 두개골 밖에서 측정하는 뇌파 분석 등으로 연구 방법이 한정되어 있었다. 이로 인해 뇌의 발달 단계에서 일어나는 다양한 현상이나 장애의 원인, 그리고 그 치료기술을 개발하는 연구에도 한계가 있었다. 최근에는 쥐에서 추출된 신경세포나 인간 유래의 유도만능줄기세포(iPSC)를 이용하여 인공 뇌를 구현하고, 이를 이용하여 뇌 발달 과정을 연구하거나 뇌 질환의 원인을 규명하는 연구가 뇌의 신비를 풀어 줄 열쇠로 주목을 받고 있다. 과거 인공 뇌는 평면 형태로 제작하여 연구해왔는데, 입체적인 실제 뇌와의 괴리를 줄이기 위해 3차원(3D) 형태의 입체적인 인공 뇌가 2017년 KIST 연구팀에 의해 개발된 바 있다. 하지만, 3D 인공 뇌의 신호를 연구하기 위한 분석 툴은 개발되지 않아, 표면에서의 신호만 분석하거나 입체 구조를 평면 형태로 무너뜨려 연구해야 해서 복잡하게 얽혀진 인공 신경망에서의 신경 신호 추적에 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 조일주, 최낙원 박사팀이 입체 형태의 인공 뇌 회로를 망가뜨리지 않고 정밀하게 자극하고 세포 단위의 신경 신호를 내부의 여러 곳에서 실시간으로 측정할 수 있는 초소형 분석 시스템을 개발했다고 밝혔다. 연구진이 개발한 3차원 다기능 신경 신호 측정 시스템은 머리카락 절반 정도인 50㎛ 두께의 실리콘 탐침 어레이에 63개의 침 형태의 전극을 집적한 형태로, 인공 뇌에 꽂아 뇌 신경망 회로 내부 여러 곳의 신호를 동시에 측정할 수 있다. 탐침 내부에는 광섬유와 약물 전달 채널이 집적되어 있어 뇌 세포를 빛이나 약물로 정밀하게 자극하여 자극에 반응하는 인공 뇌 회로의 기능 변화를 측정함으로써, 인공 뇌를 이용한 뇌 기능 및 질환 연구를 가능하게 하였다. 연구팀은 개발된 시스템을 이용하여 인공 뇌의 뇌세포를 빛으로 자극하고 이에 반응하여 전파되는 신호를 여러 곳에서 동시에 측정하여 뇌 신호의 전파속도가 뇌세포 부위별로 다름을 밝혀내었다. 뇌지도를 작성함에 있어 전자현미경을 통해 제작할 수 있는 구조적 뇌 지도뿐만 아니라 복잡한 인공 뇌 회로망 내에서 뇌 회로가 어떻게 기능적으로 연결되어 있는지를 보여주는 3차원 기능적 뇌지도를 작성할 수 있는 가능성을 확인했다. KIST 최낙원 박사는 “개발한 시스템을 통해서 다양한 뇌 발달 장애와 뇌 질환의 원인 및 치료 방법 등을 연구할 수 있게 되었다.”라고 말했다. 공동 연구책임자인 조일주 박사는 “기존에는 불가능하였던 3차원의 인공 뇌 기능 측정을 가능하게 하는 시스템 개발로 다양한 뇌 질환 치료제 개발 기간을 획기적으로 단축할 수 있는 역할을 할 수 있을 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단의 미래뇌융합기술개발사업으로 수행되었으며, 이번 연구 결과는 ‘Nature Communications’ (IF: 12.121) 최신 호에 게재되었다. * (논문명) 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics - (제 1저자) 한국과학기술연구원 신효근 학생연구원 - (교신저자) 한국과학기술연구원 최낙원 책임연구원 - (교신저자) 한국과학기술연구원 조일주 책임연구원 <그림설명> [그림 1] 3D 인공 뇌 회로와 자극 및 신경 신호 측정을 위한 3차원 다기능 전극 어레이 [그림 2] KIST 연구진이 제작한 3차원 인공 뇌 회로 측정용 다기능 3D 전극 어레이
인공 뇌 신호 분석해서 뇌 지도 제작한다
- 평면형태의 뇌 신호만 측정할 수 있던 기술의 한계 극복 - 인간 세포 기반 인공 뇌에 적용 가능한 새로운 뇌 질환 치료제 평가 방법 제시 우리 뇌는 다른 장기와는 달리 두껍고 단단한 두개골로 덮여 있어 접근이 어려워 해상도가 낮은 영상 기반이나 두개골 밖에서 측정하는 뇌파 분석 등으로 연구 방법이 한정되어 있었다. 이로 인해 뇌의 발달 단계에서 일어나는 다양한 현상이나 장애의 원인, 그리고 그 치료기술을 개발하는 연구에도 한계가 있었다. 최근에는 쥐에서 추출된 신경세포나 인간 유래의 유도만능줄기세포(iPSC)를 이용하여 인공 뇌를 구현하고, 이를 이용하여 뇌 발달 과정을 연구하거나 뇌 질환의 원인을 규명하는 연구가 뇌의 신비를 풀어 줄 열쇠로 주목을 받고 있다. 과거 인공 뇌는 평면 형태로 제작하여 연구해왔는데, 입체적인 실제 뇌와의 괴리를 줄이기 위해 3차원(3D) 형태의 입체적인 인공 뇌가 2017년 KIST 연구팀에 의해 개발된 바 있다. 하지만, 3D 인공 뇌의 신호를 연구하기 위한 분석 툴은 개발되지 않아, 표면에서의 신호만 분석하거나 입체 구조를 평면 형태로 무너뜨려 연구해야 해서 복잡하게 얽혀진 인공 신경망에서의 신경 신호 추적에 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 조일주, 최낙원 박사팀이 입체 형태의 인공 뇌 회로를 망가뜨리지 않고 정밀하게 자극하고 세포 단위의 신경 신호를 내부의 여러 곳에서 실시간으로 측정할 수 있는 초소형 분석 시스템을 개발했다고 밝혔다. 연구진이 개발한 3차원 다기능 신경 신호 측정 시스템은 머리카락 절반 정도인 50㎛ 두께의 실리콘 탐침 어레이에 63개의 침 형태의 전극을 집적한 형태로, 인공 뇌에 꽂아 뇌 신경망 회로 내부 여러 곳의 신호를 동시에 측정할 수 있다. 탐침 내부에는 광섬유와 약물 전달 채널이 집적되어 있어 뇌 세포를 빛이나 약물로 정밀하게 자극하여 자극에 반응하는 인공 뇌 회로의 기능 변화를 측정함으로써, 인공 뇌를 이용한 뇌 기능 및 질환 연구를 가능하게 하였다. 연구팀은 개발된 시스템을 이용하여 인공 뇌의 뇌세포를 빛으로 자극하고 이에 반응하여 전파되는 신호를 여러 곳에서 동시에 측정하여 뇌 신호의 전파속도가 뇌세포 부위별로 다름을 밝혀내었다. 뇌지도를 작성함에 있어 전자현미경을 통해 제작할 수 있는 구조적 뇌 지도뿐만 아니라 복잡한 인공 뇌 회로망 내에서 뇌 회로가 어떻게 기능적으로 연결되어 있는지를 보여주는 3차원 기능적 뇌지도를 작성할 수 있는 가능성을 확인했다. KIST 최낙원 박사는 “개발한 시스템을 통해서 다양한 뇌 발달 장애와 뇌 질환의 원인 및 치료 방법 등을 연구할 수 있게 되었다.”라고 말했다. 공동 연구책임자인 조일주 박사는 “기존에는 불가능하였던 3차원의 인공 뇌 기능 측정을 가능하게 하는 시스템 개발로 다양한 뇌 질환 치료제 개발 기간을 획기적으로 단축할 수 있는 역할을 할 수 있을 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단의 미래뇌융합기술개발사업으로 수행되었으며, 이번 연구 결과는 ‘Nature Communications’ (IF: 12.121) 최신 호에 게재되었다. * (논문명) 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics - (제 1저자) 한국과학기술연구원 신효근 학생연구원 - (교신저자) 한국과학기술연구원 최낙원 책임연구원 - (교신저자) 한국과학기술연구원 조일주 책임연구원 <그림설명> [그림 1] 3D 인공 뇌 회로와 자극 및 신경 신호 측정을 위한 3차원 다기능 전극 어레이 [그림 2] KIST 연구진이 제작한 3차원 인공 뇌 회로 측정용 다기능 3D 전극 어레이
인공 뇌 신호 분석해서 뇌 지도 제작한다
- 평면형태의 뇌 신호만 측정할 수 있던 기술의 한계 극복 - 인간 세포 기반 인공 뇌에 적용 가능한 새로운 뇌 질환 치료제 평가 방법 제시 우리 뇌는 다른 장기와는 달리 두껍고 단단한 두개골로 덮여 있어 접근이 어려워 해상도가 낮은 영상 기반이나 두개골 밖에서 측정하는 뇌파 분석 등으로 연구 방법이 한정되어 있었다. 이로 인해 뇌의 발달 단계에서 일어나는 다양한 현상이나 장애의 원인, 그리고 그 치료기술을 개발하는 연구에도 한계가 있었다. 최근에는 쥐에서 추출된 신경세포나 인간 유래의 유도만능줄기세포(iPSC)를 이용하여 인공 뇌를 구현하고, 이를 이용하여 뇌 발달 과정을 연구하거나 뇌 질환의 원인을 규명하는 연구가 뇌의 신비를 풀어 줄 열쇠로 주목을 받고 있다. 과거 인공 뇌는 평면 형태로 제작하여 연구해왔는데, 입체적인 실제 뇌와의 괴리를 줄이기 위해 3차원(3D) 형태의 입체적인 인공 뇌가 2017년 KIST 연구팀에 의해 개발된 바 있다. 하지만, 3D 인공 뇌의 신호를 연구하기 위한 분석 툴은 개발되지 않아, 표면에서의 신호만 분석하거나 입체 구조를 평면 형태로 무너뜨려 연구해야 해서 복잡하게 얽혀진 인공 신경망에서의 신경 신호 추적에 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 조일주, 최낙원 박사팀이 입체 형태의 인공 뇌 회로를 망가뜨리지 않고 정밀하게 자극하고 세포 단위의 신경 신호를 내부의 여러 곳에서 실시간으로 측정할 수 있는 초소형 분석 시스템을 개발했다고 밝혔다. 연구진이 개발한 3차원 다기능 신경 신호 측정 시스템은 머리카락 절반 정도인 50㎛ 두께의 실리콘 탐침 어레이에 63개의 침 형태의 전극을 집적한 형태로, 인공 뇌에 꽂아 뇌 신경망 회로 내부 여러 곳의 신호를 동시에 측정할 수 있다. 탐침 내부에는 광섬유와 약물 전달 채널이 집적되어 있어 뇌 세포를 빛이나 약물로 정밀하게 자극하여 자극에 반응하는 인공 뇌 회로의 기능 변화를 측정함으로써, 인공 뇌를 이용한 뇌 기능 및 질환 연구를 가능하게 하였다. 연구팀은 개발된 시스템을 이용하여 인공 뇌의 뇌세포를 빛으로 자극하고 이에 반응하여 전파되는 신호를 여러 곳에서 동시에 측정하여 뇌 신호의 전파속도가 뇌세포 부위별로 다름을 밝혀내었다. 뇌지도를 작성함에 있어 전자현미경을 통해 제작할 수 있는 구조적 뇌 지도뿐만 아니라 복잡한 인공 뇌 회로망 내에서 뇌 회로가 어떻게 기능적으로 연결되어 있는지를 보여주는 3차원 기능적 뇌지도를 작성할 수 있는 가능성을 확인했다. KIST 최낙원 박사는 “개발한 시스템을 통해서 다양한 뇌 발달 장애와 뇌 질환의 원인 및 치료 방법 등을 연구할 수 있게 되었다.”라고 말했다. 공동 연구책임자인 조일주 박사는 “기존에는 불가능하였던 3차원의 인공 뇌 기능 측정을 가능하게 하는 시스템 개발로 다양한 뇌 질환 치료제 개발 기간을 획기적으로 단축할 수 있는 역할을 할 수 있을 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단의 미래뇌융합기술개발사업으로 수행되었으며, 이번 연구 결과는 ‘Nature Communications’ (IF: 12.121) 최신 호에 게재되었다. * (논문명) 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics - (제 1저자) 한국과학기술연구원 신효근 학생연구원 - (교신저자) 한국과학기술연구원 최낙원 책임연구원 - (교신저자) 한국과학기술연구원 조일주 책임연구원 <그림설명> [그림 1] 3D 인공 뇌 회로와 자극 및 신경 신호 측정을 위한 3차원 다기능 전극 어레이 [그림 2] KIST 연구진이 제작한 3차원 인공 뇌 회로 측정용 다기능 3D 전극 어레이