Result
게시물 키워드"KIST"에 대한 4647개의 검색결과를 찾았습니다.
[투데이 窓]기업가는 방법을 찾아냅니다
융합연구정책센터 김현우 소장 얼마전 GRaND-K 창업경진대회가 있었다. 홍릉강소특구가 주최하고 한국과학기술연구원(KIST), 경희대, 고려대가 공동으로 운영하는 창업경진대회다. 지난해에 이어 올해도 100개 넘는 팀이 참여해 성황을 이뤘다. 창업자에게 허락된 5분 발표, 5분 질의응답은 그들의 열정과 포부를 전달하기에 턱없이 부족했다. 치열하고도 잔인한 10분이었다. GRaND-K는 우리 고유의 창업교육 및 지원프로그램을 만들자는 의기투합으로 시작했다. 창업과 비즈니스 현장을 중심으로 기획했다. 주요 교육과 평가를 벤처캐피탈, 액셀러레이터 전문가가 맡는다. 초기단계에서 짧은 강의실 수업 기간이 끝나면 멘토로 지정받은 벤처캐피탈, 액셀러레이터에서 개별 창업교육을 받는다. 창업 예비팀과 초기 창업팀의 아이템, 현황에 최적화된 사업계획을 준비한다. 천편일률적인 발표를 찾을 수 없는 이유다. 참여한 팀들의 공통된 특징을 3D로 표현할 수 있었다. 첫 번째 D는 난제(Difficulty) 창업이다. 암, 치매, 자폐증과 같은 인류의 숙원에 도전했다. 다수의 창업자가 교수, 연구원, 의사로서 10년, 20년 난제와 씨름해온 전문가였다. 겸직제도, 기술투자 등 대학과 연구소가 창업을 권장하는 제도를 도입한 결과다. 두 번째 D는 첨단기술(Deep Tech)이다. 창업에 적용된 기술이 세계 최초거나 최고라고 자부했다. 재기발랄한 대학생의 아이디어 창업도 중요하지만 진입장벽이 높은 기술창업이 생존율과 파급효과에서 유리한 것 또한 사실이다. 마지막 D는 온 힘을 다하는(Devotion) 창업이다. 일부 창업아이템은 첨단기술로 볼 수 없었지만 큰 박수를 받았다. 수십 번 재설계하는 노력으로 완성도를 높여 잠재가치를 끌어냈다. 또 미래고객을 수백 번 만나 니즈를 반영해 시장 경쟁력 있는 제품과 서비스를 만들어냈다. 어쩌면 가장 높은 진입장벽을 보유한 창업일 수 있다. 이런 창업기업을 발굴해 맘껏 성장할 수 있는 생태계를 제공해야 하는 곳이 혁신클러스터다. 1980년대 세운상가는 창업의 메카였다. 창업이 넘쳐나고 구하지 못할 제품이 없었다. 세상에 없는 제품마저 솜씨 좋은 기술자의 손에서 뚝딱 만들어졌다. 2000년대 혁신의 중심은 테헤란로였다. 스타 창업기업을 연이어 배출했다. 2010년 이후 모범사례는 중국 중관춘이다. 바이두, 레노버와 같은 중국을 대표하는 IT기업을 길러내 중국 경제의 한 축을 차지했다. 미국은 불변의 창업과 혁신의 아이콘 실리콘밸리뿐만 아니라 급성장한 보스턴 바이오클러스터가 있다. 세운상가와 테헤란로의 분주함을 재현하고 중관춘과 보스턴의 역동성을 국내로 가져오려는 시도가 있었다. 원스톱 창업서비스를 제공하는 중관춘의 이노웨이(Innoway)와 보스턴의 랩센트럴(LabCentral)을 벤치마킹했다. 유사한 창업지원센터도 여럿 세웠다. 안타깝게도 큰 성공을 거뒀다는 소식은 들리지 않는다. 문제는 시장이다. 세운상가와 테헤란로는 당시 세계에서 찾아볼 수 없는 한국 사회의 역동성, 경제의 팽창과 맞닿아 있었다. 중관춘의 힘은 세계의 공장 '메이드인 차이나'와 14억 내수시장에서 나온다. 보스턴의 경쟁력 또한 미국이라는 세계 최대 바이오시장에 직접 연결된 파이프라인임을 부인할 수는 없다. 인재와 기술도 시장이 있어야 힘을 발휘한다. GRaND-K의 창업기업은 홍릉강소특구를 모판 삼아 싹을 틔울 것이다. 그리고 유니콘으로 성장할 수 있는 최적지를 찾을 것이다. 지금 우리의 혁신클러스터가 준비해야 할 것은 축소사회로 접어든 한국 시장을 넘어 세계 시장으로 연결하는 웜홀을 마련하는 일이다. "생명은 방법을 찾아냅니다." 영화 '쥬라기공원'에 나오는 명대사다. 창업기업도 생명이다. 세계 시장으로 나아갈 길을 보여준다면 갓 알에서 깨어난 우리 공룡들도 번영의 방법을 찾아낼 것이다. 출처: 머니투데이(링크)
KIST 통합정보시스템 링크 및 회원가입방법
KIST에 소속된 직원 및 학생연구원에 한하여 통합정보시스템을 이용하실 수 있습니다. 자세한 이용방법은 데이터정보팀(02-958-6291)으로 문의하시기 바랍니다.
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰
리튬 이온 배터리 열화의 비밀을 밝히다
- KIST, 자체 개발 원스톱 배터리분석플랫폼으로 리튬이온 이동경로 규명 - 음극재 팽창·열화 메커니즘 확인…안정성·고효율 소재설계 새 방향 제시 전 세계적인 탄소중립 노력 속에 내연기관 자동차를 전기차로 전환하려는 글로벌 완성차 기업들의 연구개발도 활발하게 이루어지고 있다. 이와 함께 전기차의 핵심인 배터리 성능 향상을 위한 경쟁도 더욱 치열해지고 있다. 현재 시장의 대세는 리튬 이온 배터리로, 지난 1991년 상용화된 이후 지속적인 에너지 밀도 및 효율 개선에 힘입어 소형가전부터 전기차에 이르기까지 대부분의 시장을 석권하고 있다. 하지만 여전히 음극재 팽창, 열화와 같이 배터리 내부에서 발생하는 현상은 명확히 밝혀지지 않은 부분이 존재한다. 한국과학기술연구원(KIST, 원장 윤석진)은 연구자원·데이터지원본부 안재평 본부장, 특성분석·데이터센터 김홍규 박사 연구팀이 리튬이온의 이동에 의해 배터리 내부 음극소재가 팽창 및 열화되는 과정을 실시간으로 관찰하는 데 성공했다고 밝혔다. 일반적으로 리튬 이온 배터리의 성능과 수명은 이를 충·방전하는 과정에서 발생하는 내부 전극물질의 다양한 변화에 의해 영향을 받는 것으로 알려져 있다. 하지만 배터리 내부의 전극과 전해질 등 주요 소재들이 대기환경에 노출되면 순식간에 오염되기 때문에 작동 중의 물질 이동과 소재 변화를 관찰하기가 어려웠다. 따라서 리튬 이온 이동 시 전극물질의 구조변화에 대한 정확한 관찰과 분석이 성능 및 안전성 향상의 최대 관건이 되고 있다. 리튬 이온 배터리는 충전시 리튬 이온이 음극으로 이동하고, 방전시에는 양극으로 이동하는 반응이 일어난다. KIST 연구진은 최근 상용화를 위해 배터리 충전용량을 늘리기 위한 연구가 한창인 실리콘-흑연 복합 음극소재의 실시간 관찰에 성공했다. 이론상 실리콘의 충전용량은 기존의 음극소재인 흑연보다 10배나 더 높지만, 충전 과정에서 실리콘 나노입자의 부피가 4배 가까이 팽창해 성능 및 안전성 확보에 난항을 겪고 있었다. 흑연과 실리콘 사이에 존재하는 기공이 배터리 충전 시 실리콘의 부피 팽창을 수용하여 배터리 부피 변화를 준다고 알려져 있었으나, 지금까지 전기화학 전압 곡선과 함께 이를 직접 관찰해 증명한 적이 없었다. KIST 연구진은 자체적으로 구축한 배터리 분석 플랫폼을 통해 충전중 리튬 이온이 실리콘-흑연 음극 복합체로 이동하는 과정을 직접 관찰하고, 나노 기공의 실질적인 역할 규명을 시도했다. 그 결과 리튬 이온이 흑연, 나노기공, 실리콘의 순서로 주입되는 현상을 실시간으로 관찰하는데 성공했다. 연구진에 따르면, 기공의 크기가 마이크로 단위일 경우에는 기존에 알려진 대로 실리콘의 부피 팽창을 완화해주지만, 나노 크기의 기공은 실리콘의 부피 팽창을 수용하는 것이 아니라 리튬 실리콘 입자보다 먼저 리튬 이온을 저장하는 역할을 담당했다. 따라서 음극소재 설계시 실리콘의 부피팽창을 완화하여 소재의 안전성을 높이면서 동시에 리튬 이온의 저장소 역할을 하는 마이크로, 나노 크기의 기공들을 적절히 분배하는 설계법을 도입할 필요가 있음을 밝혀냈다. KIST 안재평 본부장은 “제임스웹 천체 망원경이 우주탐사의 신기원을 열었다면, KIST의 배터리 분석플랫폼은 전기 배터리의 구조변화 관찰을 가능케 함으로써 소재 연구에 새로운 지평을 열었다고 평가할 수 있을 것”이라며, “향후 대기 노출에 영향을 받지 않는 배터리 소재의 구조변화 관찰을 통해 배터리 소재 설계 혁신에 필요한 추가연구를 이어 나갈 계획이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노소재원천기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 연구 결과는 배터리 분야 국제학술지 ‘ACS Energy Letters’ (IF: 23.991, JCR 분야 상위 3.21%) 최신 호에 게재되었다. * (논문명) Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation - (제 1저자) 한국과학기술연구원 이현정 학생연구원 - (교신저자) 한국과학기술연구원 김홍규 선임연구원, 안재평 책임연구원 그림설명 [그림 1] KIST 배터리분석플랫폼 모식도 [그림 2] 전자현미경을 이용한 카본-실리콘 복합체에서의 리튬 이동 관찰