Result
게시물 키워드""에 대한 9487개의 검색결과를 찾았습니다.
탄소나노튜브 세계적 권위자, 전북분원과 손잡고 복합소재 시장 선도에 나서(2013.08.26)
탄소나노튜브(CNT*)분야 세계적 권위자이자 노벨 물리·화학상 후보자로 거론되는 일본 신슈대 엔도 모리노부 교수가 우리 원 전북분원(분원장 홍경태) 복합소재기술연구소와 손잡고 세계 복합소재 시장 선점에 나선다. 우리 원은 8월 26일 엔도 모리노부 교수를 전북분원 국제특별자문위원으로 위촉하였다. 엔도 교수는 1년 중 약 4개월을 한국에 머무르면서, 탄소 기반 초전도체 개발 및 나노바이오 소재, 에너지 저장 분야에서 공동연구를 진행할 계획이다. 연구기반 정착과 중점연구 활성화를 견인할 과학자 유치를 위해 전북분원은 서치 커미티를 가동하여 후보자를 발굴하였고, 그 결과 탄소 분야 연구에 경력이 많고 이 분야의 선구자인 엔도 교수를 최종 적임자로 선정하였다. 엔도 교수는 카본 소재 분야에서 노벨 물리·화학상 후보로 거론되는 세계적 권위자로 손꼽히는 인물이다. 1946년 일본 나가노에서 태어난 그는 신슈대에서 전기 공학을 전공하고 일본 나고야 대학과 프랑스 오를레앙 대학에서 박사 학위를 받았다. 그 후 금속 나노입자를 이용한 촉매 화학 기상 증착법**으로 CNT를 합성하였고, CNT 구조를 증명하는데 성공하였다. 또한 그는 미국 탄소 협회의 ‘Charles E. Pettinos Award' 수상을 시작으로 미국 국립산업안전보건연구원과 재료연구학회, 일본 정부에서 주는 상들을 휩쓸었다. 뿐만 아니라 최근에는 나노과학과 나노기술 분야에서 뛰어난 업적을 보여준 세계적 과학자에게 임명하는 ‘NANOSMAT Prize 2012’에 선정되어 연구 성과의 탁월함을 인정받고 있다. 전북분원 홍경태 분원장은 “엔도 교수와의 공동연구를 통해 전북분원이 탄소복합소재 연구경쟁력을 강화하고, 창의적이고 혁신적인 소재원천기술 확보를 바탕으로 세계시장을 선도하는 연구소로 거듭날 것으로 기대한다”고 밝혔다. 전북분원은 지역전략산업 육성과 연계하여 복합소재분야의 핵심 원천소재 개발, 기업지원 및 관련 인력육성을 목적으로 2008년에 설립되었고, 짧은 시간에도 불구하고 많은 연구 성과들을 도출해 왔다. 이번 엔도 교수의 영입은 전북분원이 첨단 복합소재·부품 연구개발의 중심기관으로서 세계시장을 선도하는 데 발판이 될 것으로 기대를 모으고 있다.
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프
탄소나노튜브로 K-탄소섬유 제조 역사 새롭게 쓴다
-‘우주 엘리베이터’개발에 필요한 초고강도·초고탄성 탄소나노튜브 섬유 - 우주, 국방, 항공 산업 미래 먹거리 창출 및 소재 강국으로 진입 기대 지구 표면과 우주기지를 연결하여 로켓보다 훨씬 저렴하게 사람과 물자를 운송할 수 있게 해주는 ‘우주 엘리베이터’. 이러한 우주 엘리베이터를 현실화시키기 위해서는 매우 가벼우면서도 튼튼한 소재가 필요하다. 탄소나노튜브는 강철의 100배 이상 강한 강도를 가지지만 무게는 4배 이상 가벼운 신소재로서 우주 엘리베이터뿐만 아니라 우주, 국방, 항공 분야 등에서 꿈의 소재로 주목받고 있다. 게다가 구리 수준의 높은 전기전도도와 다이아몬드 수준의 열전도도를 가지고 있다. 그러나 탄소나노튜브를 섬유화할 경우 인접한 탄소나노튜브와의 접촉 면적이 낮고, 길이가 짧아 물성이 저하되는 문제가 있어 광범위한 사용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 전북 복합소재기술연구소 탄소융합소재연구센터 구본철 박사 연구팀이 수원대학교(총장 박철수) 류성우 교수 연구팀과 스페인 임데아 머터리얼스 연구소(IMDEA Materials Institute) 빌라텔라 박사(Dr. Juan Jose Vilatela) 연구팀과의 공동연구를 통해 초고강도·초고탄성 탄소나노튜브 섬유 소재를 개발했다고 밝혔다. 기존 폴리아크릴로니트릴(PAN)계 탄소섬유는 강도가 높고 탄성률이 낮으며, 피치계 탄소섬유는 강도보다는 탄성률이 높은 특징이 있다. 탄소섬유 강도와 탄성률을 동시에 향상시키는 연구는 탄소나노튜브를 약 1% 정도의 소량만 첨가하는 방향으로 이루어진데 반해, KIST-수원대-IMDEA 공동연구팀은 기존 탄소섬유 전구체인 고분자와 피치를 사용하지 않고 탄소나노튜브 단독 섬유를 제조하였다. 연구진은 대량생산이 가능한 습식섬유 제조공정을 통해 고밀도·고배향 탄소나노섬유를 제조한 후, 고온에서 열처리하여 흑연구조를 포함한 다양한 형태의 특이 구조로 전환시켰다. 이를 통해, 탄소나노튜브 접촉 면적이 늘어나도록 하였다. 이렇게 제조한 탄소나노튜브 섬유는 기존 탄소섬유가 보이지 못한 초고강도(6.57GPa)·초고탄성(629GPa) 특성을 동시에 보이며 유연성을 나타내는 매듭강도까지 높아 많은 응용이 기대되고 있다.(그림 2) 구본철 박사는 “탄소섬유 분야 후발 주자인 대한민국이 탄소나노튜브 소재를 이용해 해당 분야를 선도할 수 있는 K-탄소섬유 제조기술로서 우주·국방·항공 산업의 미래 먹거리를 창출하고 소재 강국으로 진입하는 중요한 기술”이라고 이번 연구의 의의를 설명했다. 또한 “탄소나노튜브 기반 초고강도·초고탄성 탄소섬유 제조 원천기술은 확보하였으나 핵심소재인 이중벽 탄소나노튜브 대량생산 기술이 선행되어야 초고성능 탄소섬유 양산이 가능한 상황”이라며 국가적 차원의 지원 및 산업계의 관심이 필요하다고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 개방형 연구사업 및 지역혁신 선도연구센터사업으로 수행되었으며, 연구결과는 ‘Science Advances’(IF: 14.14, JCR 6.25%) 최신 호에 게재되었다. KIST 전북 복합소재기술연구소(김진상 분원장)는 2017년부터 4U복합소재개발사업을 추진하여 우주환경용 4가지 초물성(초경량·초고강도·초고전기전도도·초고열전도도) 소재 개발을 이끌었으며, NASA와 한국재료연구원, 한국원자력연구원, 포스텍, 전북대, 인하대, 동아대, 서울대 등과의 공동연구를 통해 세계적인 연구결과를 도출하고 있다. * (논문명) Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenc - (제 1저자) 한국과학기술연구원, 수원대 이동주 학생연구원 - (제 1저자) 한국과학기술연구원 김서균 박사후연구원 - (교신저자) 스페인 IMDEA Materials Institute, Juan Jose Vilatela 박사 - (교신저자) 수원대 신소재 공학과 류성우 교수 - (교신저자) 한국과학기술연구원 구본철 책임연구원 그림 설명 [그림1] 열처리 온도에 따른 탄소나노튜브의 형태 변화 모식도 [그림2] (좌) 연속적으로 제조한 탄소나노튜브 섬유 (우) 탄소나노튜브 섬유와 상용화된 탄소섬유의 물성 비교 그래프