Result
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
새로운 전극소재로 고성능 전기에너지 저장 시스템 실현한다
새로운 전극소재로 고성능 전기에너지 저장 시스템 실현한다 - 기존보다 150%이상 에너지 저장이 가능한 신규 금속유기구조체 전극소재 개발 - 다양한 차세대 전기화학적 에너지 저장 소자 분야에 폭 넓은 활용 기대 전력난의 해결을 위한 수단으로 각광받고 있는 에너지 저장 시스템(ESS, Energy Storage System)은 풍력, 조력, 태양열, 수력, 화력 발전과 같은 수단을 이용해 발생한 에너지의 잉여 에너지를 저장하기 위한 시스템이다. 기존 리튬 이차전지의 경우, 높은 생산 단가와 안정성 문제에 의해 대용량 전력 수요 대비를 위한 에너지저장 시스템으로의 적용에는 한계가 있었다. 최근 국내 연구진이 저비용으로 고효율과 고 안정성을 확보할 수 있는 물을 기반으로 하는 수계 이차전지를 위한 새로운 금속유기구조체*(MOF, Metal-Orgnic Framework) 전극 소재 개발에 성공했다. *금속유기구조체 : 유기 결합 분자에 금속 이온이 결합된 3차원 결정구조체로써 내부에 다수의 나노 기공을 포함하고 있는 구조체 한국과학기술연구원(KIST, 원장 이병권) 에너지융합연구단 정경윤 박사팀은 금속유기구조체 소재군의 하나인 프러시안 블루 아날로그*(Prussian Blue Analogue)구조를 기반으로, 전기화학적 높은 활성도를 보이고 저가의 소재합성이 가능한 철과 바나듐의 전이금속을 도입하여 에너지 저장 특성이 우수하면서, 저비용, 우수한 가공성을 지닌 신규 전극 소재를 개발했다. *프러시안 블루 아날로그 : 금속유기구조체의 한 종류로써 철과 시안화(Cyanide) 분자의 화학적 결합을 통해 형성된 구조(프러시안 블루)를 모체로 하여 철 이온이 다른 금속 이온으로 대체되어 있는 파생 소재군 철/바나듐 프러시안 블루 아날로그 소재는 저비용과 높은 수율을 확보할 수 있는 공침법(Co-precipitation)*을 사용하여 개발되었으며, 합성 과정 중 금속이온 간의 상대농도비와 용매의 수소이온농도(pH) 최적화를 통하여 소재의 결정성 향상과 소재 내부에 공공(Vacancy) 형성을 유도하여 소재의 결정 구조가 유지되면서도 동시에 높은 이온전도도를 확보할 수 있어 에너지 저장 측면에 있어 매우 유리한 특성을 가진다. (* 그림 1 참조) *공침법 : 서로 다른 이온들을 용매 내에서 혼합하여 동시에 침전시켜 고체 상태의 석출물을 합성하는 방법 연구진은 철/바나듐 프러시안 블루 아날로그 소재가 기존 동일 군 소재(60 mAhg-1) 대비 150% 이상의 높은 에너지 저장 용량(~100 mAhg-1)을 발현하며 100%에 이르는 높은 충·방전 효율을 나타낼 뿐만 아니라 높은 출력 특성을 보이는 것을 실험을 통해 확인했다.(* 그림 2 참조) 이는 구조 내의 철과 바나듐 전이 금속 이온이 모두 전기화학적 반응에 기여하는 다중 산화환원 반응*(Multiple redox reaction)과 구조 내의 공공(Vacancy)을 통한 높은 이온 전도 특성에 따른 것이다.(* 그림 3 참조) *다중 산화환원 반응 : 화합물의 산화환원반응에 있어 한 단위 화합물 당 2개 이상의 전자가 관여하는 반응 KIST 정경윤 박사는 “본 연구에서 개발된 철/바나듐 프러시안 블루 금속유기구조체 기반의 전극 소재는 우수한 에너지 저장 용량을 확보할 수 있을 뿐만 아니라, 소재의 우수한 가격 경쟁력, 가공성, 소재 구조 다변화 가능 등의 특성을 보유하고 있어 수계 이차전지 외에도 다양한 차세대 전기화학적 에너지 저장 소자 분야에 있어 폭넓은 활용이 기대되는 신규 소재이다.” 라고 밝혔다. 연구진은 이번에 개발된 금속유기구조체를 기반으로 소재의 합성 과정 중 도핑 및 복합체 형성을 통하여 전기 및 이온전도도의 제어와 새로운 기능성을 부여하는 연구를 진행 중에 있으며 이는 향후 수계 전해질 기반의 이차전지 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 연구사업과 국가과학기술연구회(이사장 이상천) 창의형 융합연구사업으로 수행되었으며, 연구 결과는 에너지 분야의 세계적인 과학 저널인 ‘Advanced Energy Materials’에 10월 12일자 온라인 판에 게재되었다. <그림설명> <그림 1> 철/바나듐 프러시안 블루 아날로그의 결정구조 및 원소 분포 철/바나듐 프러시안 블루 아날로그 소재 내부의 시안화 그룹(Cyanide group)과 공공(vacncy)에 의하여 높은 밀도의 침입형 자리와 낮은 전하 전달 저항 및 높은 이온 전도도가 가능하다. <그림 2> 철/바나듐 프러시안 블루 아날로그의 에너지 저장 및 출력 특성 철/바나듐 프러시안 블루 아날로그 소재는 기존 동일 군 소재 대비 150 % 이상의 높은 에너지 저장 용량(~ 100 mAhg-1)을 발현할 뿐만 아니라 높은 출력 특성을 보인다. <그림 3> X 선 흡수 분광법을 활용한 철/바나듐 프러시안 블루 아날로그의 에너지 저장 기구 규명 철/바나듐 프러시안 블루 아날로그 소재의 우수한 전기화학적 특성을 X선 흡수 분광법 (X-ray absorption spectroscopy)을 통하여 충전 과정 중 철과 바나듐 이온의 산화수 변화 측정을 바탕으로 규명하였다. 이는 구조 내의 철과 바나듐 전이 금속 이온이 모두 전기화학적 반응에 기여하는 다중 산화환원 반응 (multiple redox reaction)과 구조 내의 공공을 통한 높은 게스트 이온의 전도 특성에 따른 것이다.
새로운 전극소재로 고성능 전기에너지 저장 시스템 실현한다
새로운 전극소재로 고성능 전기에너지 저장 시스템 실현한다 - 기존보다 150%이상 에너지 저장이 가능한 신규 금속유기구조체 전극소재 개발 - 다양한 차세대 전기화학적 에너지 저장 소자 분야에 폭 넓은 활용 기대 전력난의 해결을 위한 수단으로 각광받고 있는 에너지 저장 시스템(ESS, Energy Storage System)은 풍력, 조력, 태양열, 수력, 화력 발전과 같은 수단을 이용해 발생한 에너지의 잉여 에너지를 저장하기 위한 시스템이다. 기존 리튬 이차전지의 경우, 높은 생산 단가와 안정성 문제에 의해 대용량 전력 수요 대비를 위한 에너지저장 시스템으로의 적용에는 한계가 있었다. 최근 국내 연구진이 저비용으로 고효율과 고 안정성을 확보할 수 있는 물을 기반으로 하는 수계 이차전지를 위한 새로운 금속유기구조체*(MOF, Metal-Orgnic Framework) 전극 소재 개발에 성공했다. *금속유기구조체 : 유기 결합 분자에 금속 이온이 결합된 3차원 결정구조체로써 내부에 다수의 나노 기공을 포함하고 있는 구조체 한국과학기술연구원(KIST, 원장 이병권) 에너지융합연구단 정경윤 박사팀은 금속유기구조체 소재군의 하나인 프러시안 블루 아날로그*(Prussian Blue Analogue)구조를 기반으로, 전기화학적 높은 활성도를 보이고 저가의 소재합성이 가능한 철과 바나듐의 전이금속을 도입하여 에너지 저장 특성이 우수하면서, 저비용, 우수한 가공성을 지닌 신규 전극 소재를 개발했다. *프러시안 블루 아날로그 : 금속유기구조체의 한 종류로써 철과 시안화(Cyanide) 분자의 화학적 결합을 통해 형성된 구조(프러시안 블루)를 모체로 하여 철 이온이 다른 금속 이온으로 대체되어 있는 파생 소재군 철/바나듐 프러시안 블루 아날로그 소재는 저비용과 높은 수율을 확보할 수 있는 공침법(Co-precipitation)*을 사용하여 개발되었으며, 합성 과정 중 금속이온 간의 상대농도비와 용매의 수소이온농도(pH) 최적화를 통하여 소재의 결정성 향상과 소재 내부에 공공(Vacancy) 형성을 유도하여 소재의 결정 구조가 유지되면서도 동시에 높은 이온전도도를 확보할 수 있어 에너지 저장 측면에 있어 매우 유리한 특성을 가진다. (* 그림 1 참조) *공침법 : 서로 다른 이온들을 용매 내에서 혼합하여 동시에 침전시켜 고체 상태의 석출물을 합성하는 방법 연구진은 철/바나듐 프러시안 블루 아날로그 소재가 기존 동일 군 소재(60 mAhg-1) 대비 150% 이상의 높은 에너지 저장 용량(~100 mAhg-1)을 발현하며 100%에 이르는 높은 충·방전 효율을 나타낼 뿐만 아니라 높은 출력 특성을 보이는 것을 실험을 통해 확인했다.(* 그림 2 참조) 이는 구조 내의 철과 바나듐 전이 금속 이온이 모두 전기화학적 반응에 기여하는 다중 산화환원 반응*(Multiple redox reaction)과 구조 내의 공공(Vacancy)을 통한 높은 이온 전도 특성에 따른 것이다.(* 그림 3 참조) *다중 산화환원 반응 : 화합물의 산화환원반응에 있어 한 단위 화합물 당 2개 이상의 전자가 관여하는 반응 KIST 정경윤 박사는 “본 연구에서 개발된 철/바나듐 프러시안 블루 금속유기구조체 기반의 전극 소재는 우수한 에너지 저장 용량을 확보할 수 있을 뿐만 아니라, 소재의 우수한 가격 경쟁력, 가공성, 소재 구조 다변화 가능 등의 특성을 보유하고 있어 수계 이차전지 외에도 다양한 차세대 전기화학적 에너지 저장 소자 분야에 있어 폭넓은 활용이 기대되는 신규 소재이다.” 라고 밝혔다. 연구진은 이번에 개발된 금속유기구조체를 기반으로 소재의 합성 과정 중 도핑 및 복합체 형성을 통하여 전기 및 이온전도도의 제어와 새로운 기능성을 부여하는 연구를 진행 중에 있으며 이는 향후 수계 전해질 기반의 이차전지 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 연구사업과 국가과학기술연구회(이사장 이상천) 창의형 융합연구사업으로 수행되었으며, 연구 결과는 에너지 분야의 세계적인 과학 저널인 ‘Advanced Energy Materials’에 10월 12일자 온라인 판에 게재되었다. <그림설명> <그림 1> 철/바나듐 프러시안 블루 아날로그의 결정구조 및 원소 분포 철/바나듐 프러시안 블루 아날로그 소재 내부의 시안화 그룹(Cyanide group)과 공공(vacncy)에 의하여 높은 밀도의 침입형 자리와 낮은 전하 전달 저항 및 높은 이온 전도도가 가능하다. <그림 2> 철/바나듐 프러시안 블루 아날로그의 에너지 저장 및 출력 특성 철/바나듐 프러시안 블루 아날로그 소재는 기존 동일 군 소재 대비 150 % 이상의 높은 에너지 저장 용량(~ 100 mAhg-1)을 발현할 뿐만 아니라 높은 출력 특성을 보인다. <그림 3> X 선 흡수 분광법을 활용한 철/바나듐 프러시안 블루 아날로그의 에너지 저장 기구 규명 철/바나듐 프러시안 블루 아날로그 소재의 우수한 전기화학적 특성을 X선 흡수 분광법 (X-ray absorption spectroscopy)을 통하여 충전 과정 중 철과 바나듐 이온의 산화수 변화 측정을 바탕으로 규명하였다. 이는 구조 내의 철과 바나듐 전이 금속 이온이 모두 전기화학적 반응에 기여하는 다중 산화환원 반응 (multiple redox reaction)과 구조 내의 공공을 통한 높은 게스트 이온의 전도 특성에 따른 것이다.
새로운 전극소재로 고성능 전기에너지 저장 시스템 실현한다
새로운 전극소재로 고성능 전기에너지 저장 시스템 실현한다 - 기존보다 150%이상 에너지 저장이 가능한 신규 금속유기구조체 전극소재 개발 - 다양한 차세대 전기화학적 에너지 저장 소자 분야에 폭 넓은 활용 기대 전력난의 해결을 위한 수단으로 각광받고 있는 에너지 저장 시스템(ESS, Energy Storage System)은 풍력, 조력, 태양열, 수력, 화력 발전과 같은 수단을 이용해 발생한 에너지의 잉여 에너지를 저장하기 위한 시스템이다. 기존 리튬 이차전지의 경우, 높은 생산 단가와 안정성 문제에 의해 대용량 전력 수요 대비를 위한 에너지저장 시스템으로의 적용에는 한계가 있었다. 최근 국내 연구진이 저비용으로 고효율과 고 안정성을 확보할 수 있는 물을 기반으로 하는 수계 이차전지를 위한 새로운 금속유기구조체*(MOF, Metal-Orgnic Framework) 전극 소재 개발에 성공했다. *금속유기구조체 : 유기 결합 분자에 금속 이온이 결합된 3차원 결정구조체로써 내부에 다수의 나노 기공을 포함하고 있는 구조체 한국과학기술연구원(KIST, 원장 이병권) 에너지융합연구단 정경윤 박사팀은 금속유기구조체 소재군의 하나인 프러시안 블루 아날로그*(Prussian Blue Analogue)구조를 기반으로, 전기화학적 높은 활성도를 보이고 저가의 소재합성이 가능한 철과 바나듐의 전이금속을 도입하여 에너지 저장 특성이 우수하면서, 저비용, 우수한 가공성을 지닌 신규 전극 소재를 개발했다. *프러시안 블루 아날로그 : 금속유기구조체의 한 종류로써 철과 시안화(Cyanide) 분자의 화학적 결합을 통해 형성된 구조(프러시안 블루)를 모체로 하여 철 이온이 다른 금속 이온으로 대체되어 있는 파생 소재군 철/바나듐 프러시안 블루 아날로그 소재는 저비용과 높은 수율을 확보할 수 있는 공침법(Co-precipitation)*을 사용하여 개발되었으며, 합성 과정 중 금속이온 간의 상대농도비와 용매의 수소이온농도(pH) 최적화를 통하여 소재의 결정성 향상과 소재 내부에 공공(Vacancy) 형성을 유도하여 소재의 결정 구조가 유지되면서도 동시에 높은 이온전도도를 확보할 수 있어 에너지 저장 측면에 있어 매우 유리한 특성을 가진다. (* 그림 1 참조) *공침법 : 서로 다른 이온들을 용매 내에서 혼합하여 동시에 침전시켜 고체 상태의 석출물을 합성하는 방법 연구진은 철/바나듐 프러시안 블루 아날로그 소재가 기존 동일 군 소재(60 mAhg-1) 대비 150% 이상의 높은 에너지 저장 용량(~100 mAhg-1)을 발현하며 100%에 이르는 높은 충·방전 효율을 나타낼 뿐만 아니라 높은 출력 특성을 보이는 것을 실험을 통해 확인했다.(* 그림 2 참조) 이는 구조 내의 철과 바나듐 전이 금속 이온이 모두 전기화학적 반응에 기여하는 다중 산화환원 반응*(Multiple redox reaction)과 구조 내의 공공(Vacancy)을 통한 높은 이온 전도 특성에 따른 것이다.(* 그림 3 참조) *다중 산화환원 반응 : 화합물의 산화환원반응에 있어 한 단위 화합물 당 2개 이상의 전자가 관여하는 반응 KIST 정경윤 박사는 “본 연구에서 개발된 철/바나듐 프러시안 블루 금속유기구조체 기반의 전극 소재는 우수한 에너지 저장 용량을 확보할 수 있을 뿐만 아니라, 소재의 우수한 가격 경쟁력, 가공성, 소재 구조 다변화 가능 등의 특성을 보유하고 있어 수계 이차전지 외에도 다양한 차세대 전기화학적 에너지 저장 소자 분야에 있어 폭넓은 활용이 기대되는 신규 소재이다.” 라고 밝혔다. 연구진은 이번에 개발된 금속유기구조체를 기반으로 소재의 합성 과정 중 도핑 및 복합체 형성을 통하여 전기 및 이온전도도의 제어와 새로운 기능성을 부여하는 연구를 진행 중에 있으며 이는 향후 수계 전해질 기반의 이차전지 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유 연구사업과 국가과학기술연구회(이사장 이상천) 창의형 융합연구사업으로 수행되었으며, 연구 결과는 에너지 분야의 세계적인 과학 저널인 ‘Advanced Energy Materials’에 10월 12일자 온라인 판에 게재되었다. <그림설명> <그림 1> 철/바나듐 프러시안 블루 아날로그의 결정구조 및 원소 분포 철/바나듐 프러시안 블루 아날로그 소재 내부의 시안화 그룹(Cyanide group)과 공공(vacncy)에 의하여 높은 밀도의 침입형 자리와 낮은 전하 전달 저항 및 높은 이온 전도도가 가능하다. <그림 2> 철/바나듐 프러시안 블루 아날로그의 에너지 저장 및 출력 특성 철/바나듐 프러시안 블루 아날로그 소재는 기존 동일 군 소재 대비 150 % 이상의 높은 에너지 저장 용량(~ 100 mAhg-1)을 발현할 뿐만 아니라 높은 출력 특성을 보인다. <그림 3> X 선 흡수 분광법을 활용한 철/바나듐 프러시안 블루 아날로그의 에너지 저장 기구 규명 철/바나듐 프러시안 블루 아날로그 소재의 우수한 전기화학적 특성을 X선 흡수 분광법 (X-ray absorption spectroscopy)을 통하여 충전 과정 중 철과 바나듐 이온의 산화수 변화 측정을 바탕으로 규명하였다. 이는 구조 내의 철과 바나듐 전이 금속 이온이 모두 전기화학적 반응에 기여하는 다중 산화환원 반응 (multiple redox reaction)과 구조 내의 공공을 통한 높은 게스트 이온의 전도 특성에 따른 것이다.
KIST 스마트팜 연구, 상용화에 박차
KIST 스마트팜 연구, 상용화에 박차 - KIST 연구개발 성과를 기업에 소개, 연구 종료 전 상용화 목표 한국과학기술연구원(KIST, 원장 이병권)은 KIST 스마트팜 연구 사업이 종료되기 전에 상용화 될 수 있도록 연구내용을 기업에게 소개하는 ‘스마트팜 상용화 기술소개 워크숍’을 10월 18일(화) KIST 서울 본원에서 개최했다. KIST 강릉분원 천연물연구소(KIST 강릉분원, 분원장 오상록)는 작년 10월부터 미래창조과학부와 국가과학기술연구회 지원으로 수행되는 SFS융합연구단을 조직한 바, KIST 주관 하에 한국전자통신연구원, 한국생산기술연구원, 한국에너지기술연구원, 한국식품연구원 등 4개 출연연구기관들과 SK텔레콤 등 10개 기업들이 참여하여 스마트팜 연구를 수행하고 있으며, 3년 내 실용화를 목표로 하고 있다. 이에 1년이 지난 현시점에서 연구 개발 중인 기술을 기업에게 소개하고 사업 중반 단계부터 관심 있는 기업들과 함께 연구를 진행하고자 이번 워크숍을 개최하게 되었다. 이번 워크숍에서는 출연연구기관들의 강점을 살려 개발 중인 스마트팜 복합환경제어기술, 작업관리최적화기술, 에너지최적관리기술, 정보활용성 기술, 기능성작물용 스마트팜 기술 등이 소개된다. 현재 이들 기술은 KIST 강릉분원과 충남 천안 등에 실증팜을 구축하여 실증 테스트 중에 있으며, 향후 지자체 영농단지를 중심으로 한 시범사업도 진행될 예정이다. 또한 지난 9월에는 캐나다 매니토바大에서 매니토바大, 매니토바주 인디언 자치구인 Opaskwayak Cree Nation(OCN), ㈜카스트 엔지니어링, (재)경북테크노파크와 다자간 업무협약(MOU)을 체결하여 KIST 스마트팜 기술의 캐나다 진출을 위한 발판을 마련한 바 있다. ○ 문의 - SFS융합연구단 김형석 선임연구원 (Tel. 033-650-3660, C.P. : 010-5590-7502, hkim58@kist.re.kr) - SFS융합연구단 김상민 선임연구원 (Tel. 033-650-3640, C.P. : 010-4942-5300, kimsm@kist.re.kr)
근적외선을 가시광선으로 변환시키는 초고효율 필름 개발
근적외선*을 가시광선으로 변환시키는 초고효율 필름 개발 - 간단한 공정과 저비용으로 초고효율 나노플라즈모닉 필름 개발 - 센서, 고효율 태양전지 등 IoT분야에서 광범위하게 활용 *근적외선 : 적외선 중 파장이 가장 짧은 것 한국과학기술연구원 (KIST, 원장: 이병권) 나노포토닉스연구센터의 고형덕 박사, 권석준 박사로 구성된 공동연구팀은, 매우 높은 효율로 근적외선을 가시광선으로 변환시킬 수 있는 플라즈모닉 나노구조체*를 개발하였다. *플라즈모닉 나노구조체 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 전자기파를 생성시킬 수 있는 금속/유전체로 구성된 나노 구조체 낮은 에너지의 적외선 광자가 높은 에너지의 가시광선 광자로 변환되는 상향변환 (Upconversion) 발광은, 태양전지, 광검지기*, 바이오 이미징 등 광범위한 응용 가능성이 높을 것으로 기대되어 왔으나, 현재까지는 변환 효율이 매우 낮다는 문제점으로 인해 그 적용에 제한이 있었다. *광검지기 : 광 신호를 전기 신호로 변환시켜서 그 신호를 검출할 수 있는 소자 연구팀은 비주기적으로 배열된 플라즈모닉 금속 나노구조체를 이용하여, 기존의 상향변환 강도를 최대 1,300배 이상 증폭시킬 수 있음을 확인하였고, 이를 이용하여 기존 방식과 차별화된 근적외선 광검지기까지 개발하는데 성공하였다. 해당 기술은 정밀한 반도체 패터닝 공정을 거치지 않고도, 상대적으로 낮은 비용과 대면적에 상향변환 기능성 필름 제작이 가능하다는 장점으로 인해 다양한 분야에 대한 응용이 용이해질 것으로 기대되고 있다. 이번 연구를 통해 고형덕 박사는 “매우 간단한 공정으로도 근적외선 변환효율을 극대화시켰다는 점에서 의미가 있는 연구이며, 이러한 근적외선 변환기술을 활용하면, 향후 안개-미세먼지 등의 저시야 환경에서도 뚜렷한 사물 관찰이 가능한 카메라 이미지 센서, 3차원 위치 분석 이미징 센서 등에 적용이 가능하며, 태양전지의 효율 향상에도 기여할 수 있을 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업, 그리고 한국과학기술연구원 기관고유사업 지원을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Materials紙(IF:18.960) 9월 28일자 전면 표지 논문으로 선정되어 게재되었다. <그림설명> <그림 1> 근적외선*을 가시광선으로 변환시키는 고효율 나노플라즈모닉 필름의 개요도 (상) 및 TEM 단면 사진 (하) 비주기적인 금속 나노 입자 (AgNP) 와 금속 필름(Ag film) 사이에 나노형광체 (UCNP)를 위치하여 근적외선으로부터 가시광선으로 광변환효율이 증가함. <그림 2> 적외선을 플라즈모닉 나노구조체(MIUIM)를 포함한 다양한 샘플에 조사하였을때의 PL 세기 비교 (좌) 및 기준시료 대비 플라즈모닉 나노구조체에 의한 PL 세기 증대비 (우) 적외선을 조사하였 때, 가시광선 발광세기가 최대 1300 배 증가하였음을 확인함.
근적외선을 가시광선으로 변환시키는 초고효율 필름 개발
근적외선*을 가시광선으로 변환시키는 초고효율 필름 개발 - 간단한 공정과 저비용으로 초고효율 나노플라즈모닉 필름 개발 - 센서, 고효율 태양전지 등 IoT분야에서 광범위하게 활용 *근적외선 : 적외선 중 파장이 가장 짧은 것 한국과학기술연구원 (KIST, 원장: 이병권) 나노포토닉스연구센터의 고형덕 박사, 권석준 박사로 구성된 공동연구팀은, 매우 높은 효율로 근적외선을 가시광선으로 변환시킬 수 있는 플라즈모닉 나노구조체*를 개발하였다. *플라즈모닉 나노구조체 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 전자기파를 생성시킬 수 있는 금속/유전체로 구성된 나노 구조체 낮은 에너지의 적외선 광자가 높은 에너지의 가시광선 광자로 변환되는 상향변환 (Upconversion) 발광은, 태양전지, 광검지기*, 바이오 이미징 등 광범위한 응용 가능성이 높을 것으로 기대되어 왔으나, 현재까지는 변환 효율이 매우 낮다는 문제점으로 인해 그 적용에 제한이 있었다. *광검지기 : 광 신호를 전기 신호로 변환시켜서 그 신호를 검출할 수 있는 소자 연구팀은 비주기적으로 배열된 플라즈모닉 금속 나노구조체를 이용하여, 기존의 상향변환 강도를 최대 1,300배 이상 증폭시킬 수 있음을 확인하였고, 이를 이용하여 기존 방식과 차별화된 근적외선 광검지기까지 개발하는데 성공하였다. 해당 기술은 정밀한 반도체 패터닝 공정을 거치지 않고도, 상대적으로 낮은 비용과 대면적에 상향변환 기능성 필름 제작이 가능하다는 장점으로 인해 다양한 분야에 대한 응용이 용이해질 것으로 기대되고 있다. 이번 연구를 통해 고형덕 박사는 “매우 간단한 공정으로도 근적외선 변환효율을 극대화시켰다는 점에서 의미가 있는 연구이며, 이러한 근적외선 변환기술을 활용하면, 향후 안개-미세먼지 등의 저시야 환경에서도 뚜렷한 사물 관찰이 가능한 카메라 이미지 센서, 3차원 위치 분석 이미징 센서 등에 적용이 가능하며, 태양전지의 효율 향상에도 기여할 수 있을 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업, 그리고 한국과학기술연구원 기관고유사업 지원을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Materials紙(IF:18.960) 9월 28일자 전면 표지 논문으로 선정되어 게재되었다. <그림설명> <그림 1> 근적외선*을 가시광선으로 변환시키는 고효율 나노플라즈모닉 필름의 개요도 (상) 및 TEM 단면 사진 (하) 비주기적인 금속 나노 입자 (AgNP) 와 금속 필름(Ag film) 사이에 나노형광체 (UCNP)를 위치하여 근적외선으로부터 가시광선으로 광변환효율이 증가함. <그림 2> 적외선을 플라즈모닉 나노구조체(MIUIM)를 포함한 다양한 샘플에 조사하였을때의 PL 세기 비교 (좌) 및 기준시료 대비 플라즈모닉 나노구조체에 의한 PL 세기 증대비 (우) 적외선을 조사하였 때, 가시광선 발광세기가 최대 1300 배 증가하였음을 확인함.
근적외선을 가시광선으로 변환시키는 초고효율 필름 개발
근적외선*을 가시광선으로 변환시키는 초고효율 필름 개발 - 간단한 공정과 저비용으로 초고효율 나노플라즈모닉 필름 개발 - 센서, 고효율 태양전지 등 IoT분야에서 광범위하게 활용 *근적외선 : 적외선 중 파장이 가장 짧은 것 한국과학기술연구원 (KIST, 원장: 이병권) 나노포토닉스연구센터의 고형덕 박사, 권석준 박사로 구성된 공동연구팀은, 매우 높은 효율로 근적외선을 가시광선으로 변환시킬 수 있는 플라즈모닉 나노구조체*를 개발하였다. *플라즈모닉 나노구조체 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 전자기파를 생성시킬 수 있는 금속/유전체로 구성된 나노 구조체 낮은 에너지의 적외선 광자가 높은 에너지의 가시광선 광자로 변환되는 상향변환 (Upconversion) 발광은, 태양전지, 광검지기*, 바이오 이미징 등 광범위한 응용 가능성이 높을 것으로 기대되어 왔으나, 현재까지는 변환 효율이 매우 낮다는 문제점으로 인해 그 적용에 제한이 있었다. *광검지기 : 광 신호를 전기 신호로 변환시켜서 그 신호를 검출할 수 있는 소자 연구팀은 비주기적으로 배열된 플라즈모닉 금속 나노구조체를 이용하여, 기존의 상향변환 강도를 최대 1,300배 이상 증폭시킬 수 있음을 확인하였고, 이를 이용하여 기존 방식과 차별화된 근적외선 광검지기까지 개발하는데 성공하였다. 해당 기술은 정밀한 반도체 패터닝 공정을 거치지 않고도, 상대적으로 낮은 비용과 대면적에 상향변환 기능성 필름 제작이 가능하다는 장점으로 인해 다양한 분야에 대한 응용이 용이해질 것으로 기대되고 있다. 이번 연구를 통해 고형덕 박사는 “매우 간단한 공정으로도 근적외선 변환효율을 극대화시켰다는 점에서 의미가 있는 연구이며, 이러한 근적외선 변환기술을 활용하면, 향후 안개-미세먼지 등의 저시야 환경에서도 뚜렷한 사물 관찰이 가능한 카메라 이미지 센서, 3차원 위치 분석 이미징 센서 등에 적용이 가능하며, 태양전지의 효율 향상에도 기여할 수 있을 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업, 그리고 한국과학기술연구원 기관고유사업 지원을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Materials紙(IF:18.960) 9월 28일자 전면 표지 논문으로 선정되어 게재되었다. <그림설명> <그림 1> 근적외선*을 가시광선으로 변환시키는 고효율 나노플라즈모닉 필름의 개요도 (상) 및 TEM 단면 사진 (하) 비주기적인 금속 나노 입자 (AgNP) 와 금속 필름(Ag film) 사이에 나노형광체 (UCNP)를 위치하여 근적외선으로부터 가시광선으로 광변환효율이 증가함. <그림 2> 적외선을 플라즈모닉 나노구조체(MIUIM)를 포함한 다양한 샘플에 조사하였을때의 PL 세기 비교 (좌) 및 기준시료 대비 플라즈모닉 나노구조체에 의한 PL 세기 증대비 (우) 적외선을 조사하였 때, 가시광선 발광세기가 최대 1300 배 증가하였음을 확인함.
근적외선을 가시광선으로 변환시키는 초고효율 필름 개발
근적외선*을 가시광선으로 변환시키는 초고효율 필름 개발 - 간단한 공정과 저비용으로 초고효율 나노플라즈모닉 필름 개발 - 센서, 고효율 태양전지 등 IoT분야에서 광범위하게 활용 *근적외선 : 적외선 중 파장이 가장 짧은 것 한국과학기술연구원 (KIST, 원장: 이병권) 나노포토닉스연구센터의 고형덕 박사, 권석준 박사로 구성된 공동연구팀은, 매우 높은 효율로 근적외선을 가시광선으로 변환시킬 수 있는 플라즈모닉 나노구조체*를 개발하였다. *플라즈모닉 나노구조체 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 전자기파를 생성시킬 수 있는 금속/유전체로 구성된 나노 구조체 낮은 에너지의 적외선 광자가 높은 에너지의 가시광선 광자로 변환되는 상향변환 (Upconversion) 발광은, 태양전지, 광검지기*, 바이오 이미징 등 광범위한 응용 가능성이 높을 것으로 기대되어 왔으나, 현재까지는 변환 효율이 매우 낮다는 문제점으로 인해 그 적용에 제한이 있었다. *광검지기 : 광 신호를 전기 신호로 변환시켜서 그 신호를 검출할 수 있는 소자 연구팀은 비주기적으로 배열된 플라즈모닉 금속 나노구조체를 이용하여, 기존의 상향변환 강도를 최대 1,300배 이상 증폭시킬 수 있음을 확인하였고, 이를 이용하여 기존 방식과 차별화된 근적외선 광검지기까지 개발하는데 성공하였다. 해당 기술은 정밀한 반도체 패터닝 공정을 거치지 않고도, 상대적으로 낮은 비용과 대면적에 상향변환 기능성 필름 제작이 가능하다는 장점으로 인해 다양한 분야에 대한 응용이 용이해질 것으로 기대되고 있다. 이번 연구를 통해 고형덕 박사는 “매우 간단한 공정으로도 근적외선 변환효율을 극대화시켰다는 점에서 의미가 있는 연구이며, 이러한 근적외선 변환기술을 활용하면, 향후 안개-미세먼지 등의 저시야 환경에서도 뚜렷한 사물 관찰이 가능한 카메라 이미지 센서, 3차원 위치 분석 이미징 센서 등에 적용이 가능하며, 태양전지의 효율 향상에도 기여할 수 있을 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업, 그리고 한국과학기술연구원 기관고유사업 지원을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Materials紙(IF:18.960) 9월 28일자 전면 표지 논문으로 선정되어 게재되었다. <그림설명> <그림 1> 근적외선*을 가시광선으로 변환시키는 고효율 나노플라즈모닉 필름의 개요도 (상) 및 TEM 단면 사진 (하) 비주기적인 금속 나노 입자 (AgNP) 와 금속 필름(Ag film) 사이에 나노형광체 (UCNP)를 위치하여 근적외선으로부터 가시광선으로 광변환효율이 증가함. <그림 2> 적외선을 플라즈모닉 나노구조체(MIUIM)를 포함한 다양한 샘플에 조사하였을때의 PL 세기 비교 (좌) 및 기준시료 대비 플라즈모닉 나노구조체에 의한 PL 세기 증대비 (우) 적외선을 조사하였 때, 가시광선 발광세기가 최대 1300 배 증가하였음을 확인함.
근적외선을 가시광선으로 변환시키는 초고효율 필름 개발
근적외선*을 가시광선으로 변환시키는 초고효율 필름 개발 - 간단한 공정과 저비용으로 초고효율 나노플라즈모닉 필름 개발 - 센서, 고효율 태양전지 등 IoT분야에서 광범위하게 활용 *근적외선 : 적외선 중 파장이 가장 짧은 것 한국과학기술연구원 (KIST, 원장: 이병권) 나노포토닉스연구센터의 고형덕 박사, 권석준 박사로 구성된 공동연구팀은, 매우 높은 효율로 근적외선을 가시광선으로 변환시킬 수 있는 플라즈모닉 나노구조체*를 개발하였다. *플라즈모닉 나노구조체 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 전자기파를 생성시킬 수 있는 금속/유전체로 구성된 나노 구조체 낮은 에너지의 적외선 광자가 높은 에너지의 가시광선 광자로 변환되는 상향변환 (Upconversion) 발광은, 태양전지, 광검지기*, 바이오 이미징 등 광범위한 응용 가능성이 높을 것으로 기대되어 왔으나, 현재까지는 변환 효율이 매우 낮다는 문제점으로 인해 그 적용에 제한이 있었다. *광검지기 : 광 신호를 전기 신호로 변환시켜서 그 신호를 검출할 수 있는 소자 연구팀은 비주기적으로 배열된 플라즈모닉 금속 나노구조체를 이용하여, 기존의 상향변환 강도를 최대 1,300배 이상 증폭시킬 수 있음을 확인하였고, 이를 이용하여 기존 방식과 차별화된 근적외선 광검지기까지 개발하는데 성공하였다. 해당 기술은 정밀한 반도체 패터닝 공정을 거치지 않고도, 상대적으로 낮은 비용과 대면적에 상향변환 기능성 필름 제작이 가능하다는 장점으로 인해 다양한 분야에 대한 응용이 용이해질 것으로 기대되고 있다. 이번 연구를 통해 고형덕 박사는 “매우 간단한 공정으로도 근적외선 변환효율을 극대화시켰다는 점에서 의미가 있는 연구이며, 이러한 근적외선 변환기술을 활용하면, 향후 안개-미세먼지 등의 저시야 환경에서도 뚜렷한 사물 관찰이 가능한 카메라 이미지 센서, 3차원 위치 분석 이미징 센서 등에 적용이 가능하며, 태양전지의 효율 향상에도 기여할 수 있을 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업, 그리고 한국과학기술연구원 기관고유사업 지원을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Materials紙(IF:18.960) 9월 28일자 전면 표지 논문으로 선정되어 게재되었다. <그림설명> <그림 1> 근적외선*을 가시광선으로 변환시키는 고효율 나노플라즈모닉 필름의 개요도 (상) 및 TEM 단면 사진 (하) 비주기적인 금속 나노 입자 (AgNP) 와 금속 필름(Ag film) 사이에 나노형광체 (UCNP)를 위치하여 근적외선으로부터 가시광선으로 광변환효율이 증가함. <그림 2> 적외선을 플라즈모닉 나노구조체(MIUIM)를 포함한 다양한 샘플에 조사하였을때의 PL 세기 비교 (좌) 및 기준시료 대비 플라즈모닉 나노구조체에 의한 PL 세기 증대비 (우) 적외선을 조사하였 때, 가시광선 발광세기가 최대 1300 배 증가하였음을 확인함.
근적외선을 가시광선으로 변환시키는 초고효율 필름 개발
근적외선*을 가시광선으로 변환시키는 초고효율 필름 개발 - 간단한 공정과 저비용으로 초고효율 나노플라즈모닉 필름 개발 - 센서, 고효율 태양전지 등 IoT분야에서 광범위하게 활용 *근적외선 : 적외선 중 파장이 가장 짧은 것 한국과학기술연구원 (KIST, 원장: 이병권) 나노포토닉스연구센터의 고형덕 박사, 권석준 박사로 구성된 공동연구팀은, 매우 높은 효율로 근적외선을 가시광선으로 변환시킬 수 있는 플라즈모닉 나노구조체*를 개발하였다. *플라즈모닉 나노구조체 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 전자기파를 생성시킬 수 있는 금속/유전체로 구성된 나노 구조체 낮은 에너지의 적외선 광자가 높은 에너지의 가시광선 광자로 변환되는 상향변환 (Upconversion) 발광은, 태양전지, 광검지기*, 바이오 이미징 등 광범위한 응용 가능성이 높을 것으로 기대되어 왔으나, 현재까지는 변환 효율이 매우 낮다는 문제점으로 인해 그 적용에 제한이 있었다. *광검지기 : 광 신호를 전기 신호로 변환시켜서 그 신호를 검출할 수 있는 소자 연구팀은 비주기적으로 배열된 플라즈모닉 금속 나노구조체를 이용하여, 기존의 상향변환 강도를 최대 1,300배 이상 증폭시킬 수 있음을 확인하였고, 이를 이용하여 기존 방식과 차별화된 근적외선 광검지기까지 개발하는데 성공하였다. 해당 기술은 정밀한 반도체 패터닝 공정을 거치지 않고도, 상대적으로 낮은 비용과 대면적에 상향변환 기능성 필름 제작이 가능하다는 장점으로 인해 다양한 분야에 대한 응용이 용이해질 것으로 기대되고 있다. 이번 연구를 통해 고형덕 박사는 “매우 간단한 공정으로도 근적외선 변환효율을 극대화시켰다는 점에서 의미가 있는 연구이며, 이러한 근적외선 변환기술을 활용하면, 향후 안개-미세먼지 등의 저시야 환경에서도 뚜렷한 사물 관찰이 가능한 카메라 이미지 센서, 3차원 위치 분석 이미징 센서 등에 적용이 가능하며, 태양전지의 효율 향상에도 기여할 수 있을 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업, 그리고 한국과학기술연구원 기관고유사업 지원을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Materials紙(IF:18.960) 9월 28일자 전면 표지 논문으로 선정되어 게재되었다. <그림설명> <그림 1> 근적외선*을 가시광선으로 변환시키는 고효율 나노플라즈모닉 필름의 개요도 (상) 및 TEM 단면 사진 (하) 비주기적인 금속 나노 입자 (AgNP) 와 금속 필름(Ag film) 사이에 나노형광체 (UCNP)를 위치하여 근적외선으로부터 가시광선으로 광변환효율이 증가함. <그림 2> 적외선을 플라즈모닉 나노구조체(MIUIM)를 포함한 다양한 샘플에 조사하였을때의 PL 세기 비교 (좌) 및 기준시료 대비 플라즈모닉 나노구조체에 의한 PL 세기 증대비 (우) 적외선을 조사하였 때, 가시광선 발광세기가 최대 1300 배 증가하였음을 확인함.