Result
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다 - 우수한 이온전도도를 가지는 고체특성 이온성 액정 겔 전해질 개발 - 기존의 액체 전해질의 불안전성(증발, 누액, 발화, 폭발)을 획기적으로 개선 고성능 집적화에 따른 최신형 휴대폰 배터리의 발화 사건이 사회적 이슈이다. 제조업체들은 정확한 발화원인을 규명하지 못하고 있으며, 안전상의 문제가 심각한 것으로 보고되고 있다. 최근 국내 연구진이 이온전도 특성이 우수한 겔(Gel) 타입의 고체 전해질을 개발하여 폭발로부터 안전한 배터리를 제작할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 이온성 액체와 리튬염의 혼합물을 이용하여, 이온전도특성이 우수하면서 증발, 누액, 발화, 폭발 문제가 없는 고체특성의 이온성 액정 겔 전해질*을 제조하였다. *이온성 액정 겔 전해질 : 이온성 액체를 구성성분으로 하면서, 구조적으로 규칙적인 결정구조를 겔 전해질 전해질은 대표적인 에너지 저장소자인 리튬이차전지 및 축전기(Capacitor)등의 필수 구성성분으로 전자의 전달은 제한되지만 이온을 전달하는 특성은 우수해야 한다. 현재 카보네이트계 액체전해질*이 주로 사용되고 있는데, 액체전해질은 증발, 누액, 발화, 폭발에 취약하여 리튬이차전지의 안전성 확보에 큰 문제점으로 대두되고 있다. 이로 인해 리튬이차전지를 이용한 후방산업인 전기자동차 및 대용량 에너지저장시스템(ESS)등의 시장성장에 제약사항으로 작용하고 있었다. *카보네이트계 액체전해질 : EC (ethyl carbornate)와 같이 카보네이트(carbonate, -O-(C=O)-O-) 작용기를 가지는 액체전해질. KIST 구종민 박사팀은 자기조립 특성으로 인해 4.36 나노미터(nanometer) 크기의 규칙적인 층상구조를 이루는 스멕틱 액정*(Smectic Liquid Crystal) 특성과 고체 겔 특성을 동시에 가지는 전해질을 개발했다. 개발된 이온성 액정 겔 전해질은 기존 액체 전해질의 문제점인 증발, 누액, 발화, 폭발 문제를 근본적으로 해결할 수 있으며, 특히 고체 겔 상태임에도 불구하고 액체상태보다도 우수한 이온전달특성을 보이는 독특한 특성을 실험을 통해 증명했다. *스멕틱 액정 : 그림 1과 같이 분자들이 층상(layer-by-layer) 배열 구조를 가지는 액정 KIST 구종민 박사는 “본 연구의 이온성 액정 겔 전해질은 별도의 화학 시약 첨가없이도 물리적 고체 겔화가 가능하며, 종래의 겔 전해질에 비해 전기화학적 특성, 열적 안정성, 이온전도특성이 우수하다. 또한, 성형성과 가공성이 우수하며, 누액, 휘발, 발화, 폭발 가능성이 없어서 기존의 액체전해질의 불안전성 문제를 획기적으로 개선 가능하다.”고 밝혔다. 이번 연구는 대표적인 융합연구의 형태로 이루어졌으며, 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 수행되었다. 구종민 박사팀은 이번에 개발한 이온성 액정 겔 전해질을 리튬이차전지, 리튬이온 축전기(Capacitor) 등의 에너지 저장 소자에 대한 적용 가능성을 평가하여 상용화를 위한 후속연구에 박차를 가하고 있다. 본 연구는 미래창조과학부(장관 최양희)지원으로 KIST 기관고유 미래원천기술개발사업과 산업소재원천기술개발사업, 해양경비안전사업으로 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Advanced Materials’(IF:18.960)에 11월 9일자 최신호의 표지논문으로(Inside Back-Cover) 게재되었다. <그림설명> <그림 1> 이온성 액체와 리튬염의 조성 몰비에 따른 광학적 특성과 형성된 나노 구조체 이온성 액체와 리튬염의 조성을 적절하게 조절함에 따라 이온들간의 강한 정전기적 상호작용을 유도할 수 있고 이를 통해 4.4 나노미터 크기의 규칙적인 층상구조의 스멕틱 액정 겔 전해질을 제조하였다. 제조된 이온성 액정 전해질은 고체특성의 겔 전해질이며 광학적으로 강한 이방성을 나타내었다. <그림 2> 자기조립 구조 발달에 따른 이온전도도의 변화 본 이온성 액정 겔 전해질의 이온전도도는 이온성 액체와 리튬염의 조성에 따라 변화하며, 스멕틱 액정 구조를 가지는 이온성 액정 겔 전해질이 구조가 없는 액체상태의 전해질에 비해 우수한 이온전도 특성을 보이며 이는 자기조립형 구조가 이온들의 이동도를 촉진시키기 때문이다.
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다 - 우수한 이온전도도를 가지는 고체특성 이온성 액정 겔 전해질 개발 - 기존의 액체 전해질의 불안전성(증발, 누액, 발화, 폭발)을 획기적으로 개선 고성능 집적화에 따른 최신형 휴대폰 배터리의 발화 사건이 사회적 이슈이다. 제조업체들은 정확한 발화원인을 규명하지 못하고 있으며, 안전상의 문제가 심각한 것으로 보고되고 있다. 최근 국내 연구진이 이온전도 특성이 우수한 겔(Gel) 타입의 고체 전해질을 개발하여 폭발로부터 안전한 배터리를 제작할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 이온성 액체와 리튬염의 혼합물을 이용하여, 이온전도특성이 우수하면서 증발, 누액, 발화, 폭발 문제가 없는 고체특성의 이온성 액정 겔 전해질*을 제조하였다. *이온성 액정 겔 전해질 : 이온성 액체를 구성성분으로 하면서, 구조적으로 규칙적인 결정구조를 겔 전해질 전해질은 대표적인 에너지 저장소자인 리튬이차전지 및 축전기(Capacitor)등의 필수 구성성분으로 전자의 전달은 제한되지만 이온을 전달하는 특성은 우수해야 한다. 현재 카보네이트계 액체전해질*이 주로 사용되고 있는데, 액체전해질은 증발, 누액, 발화, 폭발에 취약하여 리튬이차전지의 안전성 확보에 큰 문제점으로 대두되고 있다. 이로 인해 리튬이차전지를 이용한 후방산업인 전기자동차 및 대용량 에너지저장시스템(ESS)등의 시장성장에 제약사항으로 작용하고 있었다. *카보네이트계 액체전해질 : EC (ethyl carbornate)와 같이 카보네이트(carbonate, -O-(C=O)-O-) 작용기를 가지는 액체전해질. KIST 구종민 박사팀은 자기조립 특성으로 인해 4.36 나노미터(nanometer) 크기의 규칙적인 층상구조를 이루는 스멕틱 액정*(Smectic Liquid Crystal) 특성과 고체 겔 특성을 동시에 가지는 전해질을 개발했다. 개발된 이온성 액정 겔 전해질은 기존 액체 전해질의 문제점인 증발, 누액, 발화, 폭발 문제를 근본적으로 해결할 수 있으며, 특히 고체 겔 상태임에도 불구하고 액체상태보다도 우수한 이온전달특성을 보이는 독특한 특성을 실험을 통해 증명했다. *스멕틱 액정 : 그림 1과 같이 분자들이 층상(layer-by-layer) 배열 구조를 가지는 액정 KIST 구종민 박사는 “본 연구의 이온성 액정 겔 전해질은 별도의 화학 시약 첨가없이도 물리적 고체 겔화가 가능하며, 종래의 겔 전해질에 비해 전기화학적 특성, 열적 안정성, 이온전도특성이 우수하다. 또한, 성형성과 가공성이 우수하며, 누액, 휘발, 발화, 폭발 가능성이 없어서 기존의 액체전해질의 불안전성 문제를 획기적으로 개선 가능하다.”고 밝혔다. 이번 연구는 대표적인 융합연구의 형태로 이루어졌으며, 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 수행되었다. 구종민 박사팀은 이번에 개발한 이온성 액정 겔 전해질을 리튬이차전지, 리튬이온 축전기(Capacitor) 등의 에너지 저장 소자에 대한 적용 가능성을 평가하여 상용화를 위한 후속연구에 박차를 가하고 있다. 본 연구는 미래창조과학부(장관 최양희)지원으로 KIST 기관고유 미래원천기술개발사업과 산업소재원천기술개발사업, 해양경비안전사업으로 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Advanced Materials’(IF:18.960)에 11월 9일자 최신호의 표지논문으로(Inside Back-Cover) 게재되었다. <그림설명> <그림 1> 이온성 액체와 리튬염의 조성 몰비에 따른 광학적 특성과 형성된 나노 구조체 이온성 액체와 리튬염의 조성을 적절하게 조절함에 따라 이온들간의 강한 정전기적 상호작용을 유도할 수 있고 이를 통해 4.4 나노미터 크기의 규칙적인 층상구조의 스멕틱 액정 겔 전해질을 제조하였다. 제조된 이온성 액정 전해질은 고체특성의 겔 전해질이며 광학적으로 강한 이방성을 나타내었다. <그림 2> 자기조립 구조 발달에 따른 이온전도도의 변화 본 이온성 액정 겔 전해질의 이온전도도는 이온성 액체와 리튬염의 조성에 따라 변화하며, 스멕틱 액정 구조를 가지는 이온성 액정 겔 전해질이 구조가 없는 액체상태의 전해질에 비해 우수한 이온전도 특성을 보이며 이는 자기조립형 구조가 이온들의 이동도를 촉진시키기 때문이다.
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다 - 우수한 이온전도도를 가지는 고체특성 이온성 액정 겔 전해질 개발 - 기존의 액체 전해질의 불안전성(증발, 누액, 발화, 폭발)을 획기적으로 개선 고성능 집적화에 따른 최신형 휴대폰 배터리의 발화 사건이 사회적 이슈이다. 제조업체들은 정확한 발화원인을 규명하지 못하고 있으며, 안전상의 문제가 심각한 것으로 보고되고 있다. 최근 국내 연구진이 이온전도 특성이 우수한 겔(Gel) 타입의 고체 전해질을 개발하여 폭발로부터 안전한 배터리를 제작할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 이온성 액체와 리튬염의 혼합물을 이용하여, 이온전도특성이 우수하면서 증발, 누액, 발화, 폭발 문제가 없는 고체특성의 이온성 액정 겔 전해질*을 제조하였다. *이온성 액정 겔 전해질 : 이온성 액체를 구성성분으로 하면서, 구조적으로 규칙적인 결정구조를 겔 전해질 전해질은 대표적인 에너지 저장소자인 리튬이차전지 및 축전기(Capacitor)등의 필수 구성성분으로 전자의 전달은 제한되지만 이온을 전달하는 특성은 우수해야 한다. 현재 카보네이트계 액체전해질*이 주로 사용되고 있는데, 액체전해질은 증발, 누액, 발화, 폭발에 취약하여 리튬이차전지의 안전성 확보에 큰 문제점으로 대두되고 있다. 이로 인해 리튬이차전지를 이용한 후방산업인 전기자동차 및 대용량 에너지저장시스템(ESS)등의 시장성장에 제약사항으로 작용하고 있었다. *카보네이트계 액체전해질 : EC (ethyl carbornate)와 같이 카보네이트(carbonate, -O-(C=O)-O-) 작용기를 가지는 액체전해질. KIST 구종민 박사팀은 자기조립 특성으로 인해 4.36 나노미터(nanometer) 크기의 규칙적인 층상구조를 이루는 스멕틱 액정*(Smectic Liquid Crystal) 특성과 고체 겔 특성을 동시에 가지는 전해질을 개발했다. 개발된 이온성 액정 겔 전해질은 기존 액체 전해질의 문제점인 증발, 누액, 발화, 폭발 문제를 근본적으로 해결할 수 있으며, 특히 고체 겔 상태임에도 불구하고 액체상태보다도 우수한 이온전달특성을 보이는 독특한 특성을 실험을 통해 증명했다. *스멕틱 액정 : 그림 1과 같이 분자들이 층상(layer-by-layer) 배열 구조를 가지는 액정 KIST 구종민 박사는 “본 연구의 이온성 액정 겔 전해질은 별도의 화학 시약 첨가없이도 물리적 고체 겔화가 가능하며, 종래의 겔 전해질에 비해 전기화학적 특성, 열적 안정성, 이온전도특성이 우수하다. 또한, 성형성과 가공성이 우수하며, 누액, 휘발, 발화, 폭발 가능성이 없어서 기존의 액체전해질의 불안전성 문제를 획기적으로 개선 가능하다.”고 밝혔다. 이번 연구는 대표적인 융합연구의 형태로 이루어졌으며, 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 수행되었다. 구종민 박사팀은 이번에 개발한 이온성 액정 겔 전해질을 리튬이차전지, 리튬이온 축전기(Capacitor) 등의 에너지 저장 소자에 대한 적용 가능성을 평가하여 상용화를 위한 후속연구에 박차를 가하고 있다. 본 연구는 미래창조과학부(장관 최양희)지원으로 KIST 기관고유 미래원천기술개발사업과 산업소재원천기술개발사업, 해양경비안전사업으로 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Advanced Materials’(IF:18.960)에 11월 9일자 최신호의 표지논문으로(Inside Back-Cover) 게재되었다. <그림설명> <그림 1> 이온성 액체와 리튬염의 조성 몰비에 따른 광학적 특성과 형성된 나노 구조체 이온성 액체와 리튬염의 조성을 적절하게 조절함에 따라 이온들간의 강한 정전기적 상호작용을 유도할 수 있고 이를 통해 4.4 나노미터 크기의 규칙적인 층상구조의 스멕틱 액정 겔 전해질을 제조하였다. 제조된 이온성 액정 전해질은 고체특성의 겔 전해질이며 광학적으로 강한 이방성을 나타내었다. <그림 2> 자기조립 구조 발달에 따른 이온전도도의 변화 본 이온성 액정 겔 전해질의 이온전도도는 이온성 액체와 리튬염의 조성에 따라 변화하며, 스멕틱 액정 구조를 가지는 이온성 액정 겔 전해질이 구조가 없는 액체상태의 전해질에 비해 우수한 이온전도 특성을 보이며 이는 자기조립형 구조가 이온들의 이동도를 촉진시키기 때문이다.
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다 - 우수한 이온전도도를 가지는 고체특성 이온성 액정 겔 전해질 개발 - 기존의 액체 전해질의 불안전성(증발, 누액, 발화, 폭발)을 획기적으로 개선 고성능 집적화에 따른 최신형 휴대폰 배터리의 발화 사건이 사회적 이슈이다. 제조업체들은 정확한 발화원인을 규명하지 못하고 있으며, 안전상의 문제가 심각한 것으로 보고되고 있다. 최근 국내 연구진이 이온전도 특성이 우수한 겔(Gel) 타입의 고체 전해질을 개발하여 폭발로부터 안전한 배터리를 제작할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 이온성 액체와 리튬염의 혼합물을 이용하여, 이온전도특성이 우수하면서 증발, 누액, 발화, 폭발 문제가 없는 고체특성의 이온성 액정 겔 전해질*을 제조하였다. *이온성 액정 겔 전해질 : 이온성 액체를 구성성분으로 하면서, 구조적으로 규칙적인 결정구조를 겔 전해질 전해질은 대표적인 에너지 저장소자인 리튬이차전지 및 축전기(Capacitor)등의 필수 구성성분으로 전자의 전달은 제한되지만 이온을 전달하는 특성은 우수해야 한다. 현재 카보네이트계 액체전해질*이 주로 사용되고 있는데, 액체전해질은 증발, 누액, 발화, 폭발에 취약하여 리튬이차전지의 안전성 확보에 큰 문제점으로 대두되고 있다. 이로 인해 리튬이차전지를 이용한 후방산업인 전기자동차 및 대용량 에너지저장시스템(ESS)등의 시장성장에 제약사항으로 작용하고 있었다. *카보네이트계 액체전해질 : EC (ethyl carbornate)와 같이 카보네이트(carbonate, -O-(C=O)-O-) 작용기를 가지는 액체전해질. KIST 구종민 박사팀은 자기조립 특성으로 인해 4.36 나노미터(nanometer) 크기의 규칙적인 층상구조를 이루는 스멕틱 액정*(Smectic Liquid Crystal) 특성과 고체 겔 특성을 동시에 가지는 전해질을 개발했다. 개발된 이온성 액정 겔 전해질은 기존 액체 전해질의 문제점인 증발, 누액, 발화, 폭발 문제를 근본적으로 해결할 수 있으며, 특히 고체 겔 상태임에도 불구하고 액체상태보다도 우수한 이온전달특성을 보이는 독특한 특성을 실험을 통해 증명했다. *스멕틱 액정 : 그림 1과 같이 분자들이 층상(layer-by-layer) 배열 구조를 가지는 액정 KIST 구종민 박사는 “본 연구의 이온성 액정 겔 전해질은 별도의 화학 시약 첨가없이도 물리적 고체 겔화가 가능하며, 종래의 겔 전해질에 비해 전기화학적 특성, 열적 안정성, 이온전도특성이 우수하다. 또한, 성형성과 가공성이 우수하며, 누액, 휘발, 발화, 폭발 가능성이 없어서 기존의 액체전해질의 불안전성 문제를 획기적으로 개선 가능하다.”고 밝혔다. 이번 연구는 대표적인 융합연구의 형태로 이루어졌으며, 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 수행되었다. 구종민 박사팀은 이번에 개발한 이온성 액정 겔 전해질을 리튬이차전지, 리튬이온 축전기(Capacitor) 등의 에너지 저장 소자에 대한 적용 가능성을 평가하여 상용화를 위한 후속연구에 박차를 가하고 있다. 본 연구는 미래창조과학부(장관 최양희)지원으로 KIST 기관고유 미래원천기술개발사업과 산업소재원천기술개발사업, 해양경비안전사업으로 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Advanced Materials’(IF:18.960)에 11월 9일자 최신호의 표지논문으로(Inside Back-Cover) 게재되었다. <그림설명> <그림 1> 이온성 액체와 리튬염의 조성 몰비에 따른 광학적 특성과 형성된 나노 구조체 이온성 액체와 리튬염의 조성을 적절하게 조절함에 따라 이온들간의 강한 정전기적 상호작용을 유도할 수 있고 이를 통해 4.4 나노미터 크기의 규칙적인 층상구조의 스멕틱 액정 겔 전해질을 제조하였다. 제조된 이온성 액정 전해질은 고체특성의 겔 전해질이며 광학적으로 강한 이방성을 나타내었다. <그림 2> 자기조립 구조 발달에 따른 이온전도도의 변화 본 이온성 액정 겔 전해질의 이온전도도는 이온성 액체와 리튬염의 조성에 따라 변화하며, 스멕틱 액정 구조를 가지는 이온성 액정 겔 전해질이 구조가 없는 액체상태의 전해질에 비해 우수한 이온전도 특성을 보이며 이는 자기조립형 구조가 이온들의 이동도를 촉진시키기 때문이다.
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다 - 우수한 이온전도도를 가지는 고체특성 이온성 액정 겔 전해질 개발 - 기존의 액체 전해질의 불안전성(증발, 누액, 발화, 폭발)을 획기적으로 개선 고성능 집적화에 따른 최신형 휴대폰 배터리의 발화 사건이 사회적 이슈이다. 제조업체들은 정확한 발화원인을 규명하지 못하고 있으며, 안전상의 문제가 심각한 것으로 보고되고 있다. 최근 국내 연구진이 이온전도 특성이 우수한 겔(Gel) 타입의 고체 전해질을 개발하여 폭발로부터 안전한 배터리를 제작할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 이온성 액체와 리튬염의 혼합물을 이용하여, 이온전도특성이 우수하면서 증발, 누액, 발화, 폭발 문제가 없는 고체특성의 이온성 액정 겔 전해질*을 제조하였다. *이온성 액정 겔 전해질 : 이온성 액체를 구성성분으로 하면서, 구조적으로 규칙적인 결정구조를 겔 전해질 전해질은 대표적인 에너지 저장소자인 리튬이차전지 및 축전기(Capacitor)등의 필수 구성성분으로 전자의 전달은 제한되지만 이온을 전달하는 특성은 우수해야 한다. 현재 카보네이트계 액체전해질*이 주로 사용되고 있는데, 액체전해질은 증발, 누액, 발화, 폭발에 취약하여 리튬이차전지의 안전성 확보에 큰 문제점으로 대두되고 있다. 이로 인해 리튬이차전지를 이용한 후방산업인 전기자동차 및 대용량 에너지저장시스템(ESS)등의 시장성장에 제약사항으로 작용하고 있었다. *카보네이트계 액체전해질 : EC (ethyl carbornate)와 같이 카보네이트(carbonate, -O-(C=O)-O-) 작용기를 가지는 액체전해질. KIST 구종민 박사팀은 자기조립 특성으로 인해 4.36 나노미터(nanometer) 크기의 규칙적인 층상구조를 이루는 스멕틱 액정*(Smectic Liquid Crystal) 특성과 고체 겔 특성을 동시에 가지는 전해질을 개발했다. 개발된 이온성 액정 겔 전해질은 기존 액체 전해질의 문제점인 증발, 누액, 발화, 폭발 문제를 근본적으로 해결할 수 있으며, 특히 고체 겔 상태임에도 불구하고 액체상태보다도 우수한 이온전달특성을 보이는 독특한 특성을 실험을 통해 증명했다. *스멕틱 액정 : 그림 1과 같이 분자들이 층상(layer-by-layer) 배열 구조를 가지는 액정 KIST 구종민 박사는 “본 연구의 이온성 액정 겔 전해질은 별도의 화학 시약 첨가없이도 물리적 고체 겔화가 가능하며, 종래의 겔 전해질에 비해 전기화학적 특성, 열적 안정성, 이온전도특성이 우수하다. 또한, 성형성과 가공성이 우수하며, 누액, 휘발, 발화, 폭발 가능성이 없어서 기존의 액체전해질의 불안전성 문제를 획기적으로 개선 가능하다.”고 밝혔다. 이번 연구는 대표적인 융합연구의 형태로 이루어졌으며, 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 수행되었다. 구종민 박사팀은 이번에 개발한 이온성 액정 겔 전해질을 리튬이차전지, 리튬이온 축전기(Capacitor) 등의 에너지 저장 소자에 대한 적용 가능성을 평가하여 상용화를 위한 후속연구에 박차를 가하고 있다. 본 연구는 미래창조과학부(장관 최양희)지원으로 KIST 기관고유 미래원천기술개발사업과 산업소재원천기술개발사업, 해양경비안전사업으로 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Advanced Materials’(IF:18.960)에 11월 9일자 최신호의 표지논문으로(Inside Back-Cover) 게재되었다. <그림설명> <그림 1> 이온성 액체와 리튬염의 조성 몰비에 따른 광학적 특성과 형성된 나노 구조체 이온성 액체와 리튬염의 조성을 적절하게 조절함에 따라 이온들간의 강한 정전기적 상호작용을 유도할 수 있고 이를 통해 4.4 나노미터 크기의 규칙적인 층상구조의 스멕틱 액정 겔 전해질을 제조하였다. 제조된 이온성 액정 전해질은 고체특성의 겔 전해질이며 광학적으로 강한 이방성을 나타내었다. <그림 2> 자기조립 구조 발달에 따른 이온전도도의 변화 본 이온성 액정 겔 전해질의 이온전도도는 이온성 액체와 리튬염의 조성에 따라 변화하며, 스멕틱 액정 구조를 가지는 이온성 액정 겔 전해질이 구조가 없는 액체상태의 전해질에 비해 우수한 이온전도 특성을 보이며 이는 자기조립형 구조가 이온들의 이동도를 촉진시키기 때문이다.
신규 균주로 가솔린 대체용 친환경 바이오연료 생산효율 높인다
신규 균주로 가솔린 대체용 친환경 바이오연료 생산효율 높인다 - 당과 바이오디젤 부산물에 신규 야생균주를 이용하여 청정바이오연료 생산 - 개발된 바이오연료를 사용하여 신재생연료 혼합의무화 정책에 기여 파리 기후협정이 11월 4일 발효될 것으로 예상됨에 따라 국제사회에서 기후변화 대응기술이 화두로 떠오르고 있다. 우리나라도 효과적인 대응을 위해 미래창조과학부(장관 최양희)에서 ‘기후변화 대응기술 확보 로드맵’을 완성, 10대 핵심기술을 선정하여 기후변화에 선제대응을 준비하고 있다. 최근, 핵심기술 중 하나인 바이오연료로 사용가능한 혼합 알코올을 선택적, 효율적으로 생산하는 기술이 국내 연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 이병권) 청청에너지연구센터 엄영순, 이선미 박사 연구팀은 나무(바이오매스)에서 추출한 당(Sugar)과 해바라기, 땅콩, 유채 같은 유지작물로부터 추출한 바이오디젤의 부산물(글리세롤)에 새로운 야생균주를 이용하여, 바이오연료로 사용이 가능한 이소프로판올(C3 알코올)과 부탄올(C4 알코올)을 선택적, 효율적으로 생산하는 기술을 개발했다고 밝혔다. 기존에는 다양한 유전자 조작 혹은 균주를 통해 바이오연료를 생산하는 기술이 발표된바 있으나, 부탄올 생산률이 낮고, 아세톤과 같이 연료에 적합하지 않은 성분이 잔존하는 한계가 있었다. 엄영순 박사팀은 바이오연료인 부탄올과 이소프로판올을 선택적으로 생산하는 신규 야생균주를 성공적으로 발굴하고, 당과 함께 바이오디젤 부산물을 포함한 탄소자원을 이용하여 바이오연료인 부탄올(C4 알코올)과 이소프로판올(C3 알코올) 생산을 효과적으로 증가시키는 방법을 제시했다는 점에서 의의가 있다. 이 바이오연료는 친환경 청정바이오연료이며, 코팅제, 페인트, 접착제 등 용제에 사용되는 기존 석유계 부탄올을 대체해 사용할 수 있다. 바이오부탄올은 현재 선진국에서 널리 사용되고 있는 바이오에탄올보다 에너지 밀도가 높고, 연비손실이 적어 엔진 개조없이 가솔린 차량연료로 사용이 가능하다. 지난해 12월 미래창조과학부(장관 최양희)에서 GS칼텍스의 바이오부탄올을 생산하는 기술을 ‘대한민국 기후변화대응 10대 기술’에 선정하면서 적극적으로 지원하겠다고 밝혔을 정도로 차세대 바이오연료로 손색이 없다. 또한 바이오부탄올은 지난 6월 정부가 발표한 ‘기후변화대응 10대 핵심기술’의 바이오연료로서 향후 활용될 계획이다. KIST 엄영순 박사는 “이번 연구로 바이오연료인 혼합 알코올을 선택적으로 높은 효율로 생산하는 우수한 야생 균주를 확보하게 되었으며, 바이오디젤 부산물인 글리세롤을 이용함으로써 바이오연료 적합성이 뛰어난 부탄올 생산을 높일 수 있었다” 라고 밝혔다. 또한 “향후, 야생 균주를 개선하여 바이오연료의 효율을 높이는 연구를 계속할 예정”이라고 말했다. 현재 정부의 방침으로 시행될 국내 바이오디젤 의무혼합율 2.5%를 향후 5%까지 상향조정계획과 향후 바이오알코올 의무혼합 도입을 고려한다면, 이번에 개발된 바이오연료 도입으로 신재생연료혼합의무화 (RFS: Renewable Fuel Standard) 정책 구현과 기후변화 대응정책에 기여할 수 있을 것으로 전망하고 있다. 본 연구는 KIST 기관고유사업과 국가과학기술연구회 창조적 융합연구사업(CAP) 사업, 그리고 한국에너지기술평가원 신재생에너지 사업의 지원을 받아 수행되었으며, 연구결과는 바이오테크놀로지 분야의 저명 국제학술지인 ‘Biotechnology for Biofuels’ (IF 6.44)의 최신호 (10월 26일)에 게재되었다. * (논문명) Effective isopropanol?butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424 - (제 1 저자) 한국과학기술연구원 윤성훈 (포닥 별정직, 현재는 퇴직상태) - (교신 저자) 한국과학기술연구원 엄영순 박사 <그림설명> <그림> 바이오연료 C3~C4 혼합알코올을 생산하는 기술 개요 나무와 같은 바이오매스에서 추출한 당(Sugar)과 유지작물로부터 나온 바이오디젤 부산물인 글리세롤을 포함한 탄소자원을 이용하여 발굴한 신규 야생균주를 이용하여 바이오연료인 부탄올(C4 알코올)과 이소프로판올(C3 알코올), 혼합알코올 생산을 효과적으로 증가시키는 기술
신규 균주로 가솔린 대체용 친환경 바이오연료 생산효율 높인다
신규 균주로 가솔린 대체용 친환경 바이오연료 생산효율 높인다 - 당과 바이오디젤 부산물에 신규 야생균주를 이용하여 청정바이오연료 생산 - 개발된 바이오연료를 사용하여 신재생연료 혼합의무화 정책에 기여 파리 기후협정이 11월 4일 발효될 것으로 예상됨에 따라 국제사회에서 기후변화 대응기술이 화두로 떠오르고 있다. 우리나라도 효과적인 대응을 위해 미래창조과학부(장관 최양희)에서 ‘기후변화 대응기술 확보 로드맵’을 완성, 10대 핵심기술을 선정하여 기후변화에 선제대응을 준비하고 있다. 최근, 핵심기술 중 하나인 바이오연료로 사용가능한 혼합 알코올을 선택적, 효율적으로 생산하는 기술이 국내 연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 이병권) 청청에너지연구센터 엄영순, 이선미 박사 연구팀은 나무(바이오매스)에서 추출한 당(Sugar)과 해바라기, 땅콩, 유채 같은 유지작물로부터 추출한 바이오디젤의 부산물(글리세롤)에 새로운 야생균주를 이용하여, 바이오연료로 사용이 가능한 이소프로판올(C3 알코올)과 부탄올(C4 알코올)을 선택적, 효율적으로 생산하는 기술을 개발했다고 밝혔다. 기존에는 다양한 유전자 조작 혹은 균주를 통해 바이오연료를 생산하는 기술이 발표된바 있으나, 부탄올 생산률이 낮고, 아세톤과 같이 연료에 적합하지 않은 성분이 잔존하는 한계가 있었다. 엄영순 박사팀은 바이오연료인 부탄올과 이소프로판올을 선택적으로 생산하는 신규 야생균주를 성공적으로 발굴하고, 당과 함께 바이오디젤 부산물을 포함한 탄소자원을 이용하여 바이오연료인 부탄올(C4 알코올)과 이소프로판올(C3 알코올) 생산을 효과적으로 증가시키는 방법을 제시했다는 점에서 의의가 있다. 이 바이오연료는 친환경 청정바이오연료이며, 코팅제, 페인트, 접착제 등 용제에 사용되는 기존 석유계 부탄올을 대체해 사용할 수 있다. 바이오부탄올은 현재 선진국에서 널리 사용되고 있는 바이오에탄올보다 에너지 밀도가 높고, 연비손실이 적어 엔진 개조없이 가솔린 차량연료로 사용이 가능하다. 지난해 12월 미래창조과학부(장관 최양희)에서 GS칼텍스의 바이오부탄올을 생산하는 기술을 ‘대한민국 기후변화대응 10대 기술’에 선정하면서 적극적으로 지원하겠다고 밝혔을 정도로 차세대 바이오연료로 손색이 없다. 또한 바이오부탄올은 지난 6월 정부가 발표한 ‘기후변화대응 10대 핵심기술’의 바이오연료로서 향후 활용될 계획이다. KIST 엄영순 박사는 “이번 연구로 바이오연료인 혼합 알코올을 선택적으로 높은 효율로 생산하는 우수한 야생 균주를 확보하게 되었으며, 바이오디젤 부산물인 글리세롤을 이용함으로써 바이오연료 적합성이 뛰어난 부탄올 생산을 높일 수 있었다” 라고 밝혔다. 또한 “향후, 야생 균주를 개선하여 바이오연료의 효율을 높이는 연구를 계속할 예정”이라고 말했다. 현재 정부의 방침으로 시행될 국내 바이오디젤 의무혼합율 2.5%를 향후 5%까지 상향조정계획과 향후 바이오알코올 의무혼합 도입을 고려한다면, 이번에 개발된 바이오연료 도입으로 신재생연료혼합의무화 (RFS: Renewable Fuel Standard) 정책 구현과 기후변화 대응정책에 기여할 수 있을 것으로 전망하고 있다. 본 연구는 KIST 기관고유사업과 국가과학기술연구회 창조적 융합연구사업(CAP) 사업, 그리고 한국에너지기술평가원 신재생에너지 사업의 지원을 받아 수행되었으며, 연구결과는 바이오테크놀로지 분야의 저명 국제학술지인 ‘Biotechnology for Biofuels’ (IF 6.44)의 최신호 (10월 26일)에 게재되었다. * (논문명) Effective isopropanol?butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424 - (제 1 저자) 한국과학기술연구원 윤성훈 (포닥 별정직, 현재는 퇴직상태) - (교신 저자) 한국과학기술연구원 엄영순 박사 <그림설명> <그림> 바이오연료 C3~C4 혼합알코올을 생산하는 기술 개요 나무와 같은 바이오매스에서 추출한 당(Sugar)과 유지작물로부터 나온 바이오디젤 부산물인 글리세롤을 포함한 탄소자원을 이용하여 발굴한 신규 야생균주를 이용하여 바이오연료인 부탄올(C4 알코올)과 이소프로판올(C3 알코올), 혼합알코올 생산을 효과적으로 증가시키는 기술
신규 균주로 가솔린 대체용 친환경 바이오연료 생산효율 높인다
신규 균주로 가솔린 대체용 친환경 바이오연료 생산효율 높인다 - 당과 바이오디젤 부산물에 신규 야생균주를 이용하여 청정바이오연료 생산 - 개발된 바이오연료를 사용하여 신재생연료 혼합의무화 정책에 기여 파리 기후협정이 11월 4일 발효될 것으로 예상됨에 따라 국제사회에서 기후변화 대응기술이 화두로 떠오르고 있다. 우리나라도 효과적인 대응을 위해 미래창조과학부(장관 최양희)에서 ‘기후변화 대응기술 확보 로드맵’을 완성, 10대 핵심기술을 선정하여 기후변화에 선제대응을 준비하고 있다. 최근, 핵심기술 중 하나인 바이오연료로 사용가능한 혼합 알코올을 선택적, 효율적으로 생산하는 기술이 국내 연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 이병권) 청청에너지연구센터 엄영순, 이선미 박사 연구팀은 나무(바이오매스)에서 추출한 당(Sugar)과 해바라기, 땅콩, 유채 같은 유지작물로부터 추출한 바이오디젤의 부산물(글리세롤)에 새로운 야생균주를 이용하여, 바이오연료로 사용이 가능한 이소프로판올(C3 알코올)과 부탄올(C4 알코올)을 선택적, 효율적으로 생산하는 기술을 개발했다고 밝혔다. 기존에는 다양한 유전자 조작 혹은 균주를 통해 바이오연료를 생산하는 기술이 발표된바 있으나, 부탄올 생산률이 낮고, 아세톤과 같이 연료에 적합하지 않은 성분이 잔존하는 한계가 있었다. 엄영순 박사팀은 바이오연료인 부탄올과 이소프로판올을 선택적으로 생산하는 신규 야생균주를 성공적으로 발굴하고, 당과 함께 바이오디젤 부산물을 포함한 탄소자원을 이용하여 바이오연료인 부탄올(C4 알코올)과 이소프로판올(C3 알코올) 생산을 효과적으로 증가시키는 방법을 제시했다는 점에서 의의가 있다. 이 바이오연료는 친환경 청정바이오연료이며, 코팅제, 페인트, 접착제 등 용제에 사용되는 기존 석유계 부탄올을 대체해 사용할 수 있다. 바이오부탄올은 현재 선진국에서 널리 사용되고 있는 바이오에탄올보다 에너지 밀도가 높고, 연비손실이 적어 엔진 개조없이 가솔린 차량연료로 사용이 가능하다. 지난해 12월 미래창조과학부(장관 최양희)에서 GS칼텍스의 바이오부탄올을 생산하는 기술을 ‘대한민국 기후변화대응 10대 기술’에 선정하면서 적극적으로 지원하겠다고 밝혔을 정도로 차세대 바이오연료로 손색이 없다. 또한 바이오부탄올은 지난 6월 정부가 발표한 ‘기후변화대응 10대 핵심기술’의 바이오연료로서 향후 활용될 계획이다. KIST 엄영순 박사는 “이번 연구로 바이오연료인 혼합 알코올을 선택적으로 높은 효율로 생산하는 우수한 야생 균주를 확보하게 되었으며, 바이오디젤 부산물인 글리세롤을 이용함으로써 바이오연료 적합성이 뛰어난 부탄올 생산을 높일 수 있었다” 라고 밝혔다. 또한 “향후, 야생 균주를 개선하여 바이오연료의 효율을 높이는 연구를 계속할 예정”이라고 말했다. 현재 정부의 방침으로 시행될 국내 바이오디젤 의무혼합율 2.5%를 향후 5%까지 상향조정계획과 향후 바이오알코올 의무혼합 도입을 고려한다면, 이번에 개발된 바이오연료 도입으로 신재생연료혼합의무화 (RFS: Renewable Fuel Standard) 정책 구현과 기후변화 대응정책에 기여할 수 있을 것으로 전망하고 있다. 본 연구는 KIST 기관고유사업과 국가과학기술연구회 창조적 융합연구사업(CAP) 사업, 그리고 한국에너지기술평가원 신재생에너지 사업의 지원을 받아 수행되었으며, 연구결과는 바이오테크놀로지 분야의 저명 국제학술지인 ‘Biotechnology for Biofuels’ (IF 6.44)의 최신호 (10월 26일)에 게재되었다. * (논문명) Effective isopropanol?butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424 - (제 1 저자) 한국과학기술연구원 윤성훈 (포닥 별정직, 현재는 퇴직상태) - (교신 저자) 한국과학기술연구원 엄영순 박사 <그림설명> <그림> 바이오연료 C3~C4 혼합알코올을 생산하는 기술 개요 나무와 같은 바이오매스에서 추출한 당(Sugar)과 유지작물로부터 나온 바이오디젤 부산물인 글리세롤을 포함한 탄소자원을 이용하여 발굴한 신규 야생균주를 이용하여 바이오연료인 부탄올(C4 알코올)과 이소프로판올(C3 알코올), 혼합알코올 생산을 효과적으로 증가시키는 기술