Result
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름