Result
게시물 키워드""에 대한 9496개의 검색결과를 찾았습니다.
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
예쁜꼬마선충이 항암제 독성 여부를 알려준다
예쁜꼬마선충이 항암제 독성 여부를 알려준다 - 포유동물의 희생을 줄이면서 신규 항암제의 독성 평가 가능 - 향후 바이오제품 및 환경유해물질의 독성평가에 활용될 것으로 기대 2002년 노벨 생리의학상을 수상한 시드니 브레너는 ‘예쁜꼬마선충’을 생물학 실험실에 도입하여 현대 유전학, 발생학, 특히 신경생물학에서 생명현상에 대한 엄청난 지적 성과를 끌어냈다. 예쁜꼬마선충(Caenorhabditis elegans)은 흙에 서식하는 1 밀리미터 정도 크기의 투명한 벌레로 900여개의 체세포와 300여개의 신경세포, 2만 여개의 유전자로 구성되어 있다. 꼬마선충의 유전자 중 40%가 인간에게 보존되어 있는 것으로 밝혀져 세포 사멸, 노화 등의 생물학적 기작이 인간에게도 적용될 수 있다고 알려졌다. 한국과학기술연구원(KIST, 원장 이병권) 강릉분원 천연물연구소(분원장 오상록) 시스템천연물연구센터 강경수 박사팀(제1저자 KIST 이소영 석사과정)은 이러한 예쁜꼬마선충을 이용하여 항암제의 독성을 평가하는 기술개발에 성공하였다. 식의약품, 화장품 등을 개발하는 바이오산업에서는 제품의 안전성을 담보하기 위하여 독성평가 과정을 거치게 된다. 이러한 평가과정에서는 쥐, 토끼, 개와 같은 포유동물들의 희생이 따르기 때문에, 동물실험윤리 이슈와 경제성 측면의 문제가 발생하게 된다. 뿐만 아니라 미세먼지, 환경호르몬, 중금속, 잔류농약, 합성화학제품, 녹조독소 등 환경유해물질의 위험성이 대두됨에 따라, 이러한 환경유해물질의 위험성을 가늠하기 위한 독성평가가 증가하게 되고, 동물실험이 보다 많이 수행될 수밖에 없는 실정이었다. 연구진은 이러한 배경에서 포유동물을 대신하여 항암제의 독성을 평가하기 위한 실험동물로 예쁜꼬마선충을 선택하였다. 즉, 실험용 쥐 대신 예쁜꼬마선충에게 항암제를 먹인 후, 행동이나 성장에는 문제가 없는지 혹은 이 벌레가 낳는 알의 개수에는 변화가 없는지를 관찰함으로써 항암제의 독성이 동물의 건강에 미치는 영향을 평가하였다. 하나의 새로운 항암제 개발을 위한 효능과 독성 평가 과정과 비교해보면, 기존의 독성 평가 수행 시 한 달 이상의 연구기간동안 실험용 쥐 100여 마리 정도를 희생시켜야하는 반면, 예쁜꼬마선충을 이용한 독성평가의 경우 포유동물을 이용한 실험 없이 일주일이면 평가 결과를 얻을 수 있었다. 기존방법인 쥐를 이용한 독성평가는 쥐의 체중변화, 조직병리분석 및 혈액검사를 바탕으로 이루어지는 반면, 벌레를 이용한 실험은 벌레의 크기변화, 알의 개수, 알의 부화속도, 생식세포 형태관찰 등을 통해 항암제의 독성을 가늠할 수 있었다. KIST 강경수 박사는 “예쁜꼬마선충은 비록 벌레이긴 하지만, 사람과 유사한 소화기관, 신경기관, 유전자를 가지고 있어서, 향후에는 항암제의 독성평가뿐만 아니라 여러 가지 식의약품의 효능발굴이나 약물의 작동원리를 밝히는 데에도 요긴하게 쓰일 수 있다.”고 설명하였다. 연구진은 현재 ‘예쁜꼬마선충 평가법’을 이용하여 항암제 후보물질과 여러 가지 환경유해물질 등 보다 다양한 케미컬을 대상으로 독성평가 시험을 진행하고 있다. 뿐만 아니라 향후 연구진은 천연물로부터 장건강을 좋게 하는 건강기능식품 개발과 같은 새로운 식의약품, 화장품 개발과정에서도 효능과 부작용을 검증하기 위해 이 벌레를 활용할 계획이다. 이를 통해, 포유동물의 희생을 최소화함으로써 동물연구윤리를 지켜나가고, 꼭 필요한 부분에 포유동물 실험을 집중함으로써 연구의 효율성을 보다 높일 수 있을 것으로 기대하고 있다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업과 농림축산식품부의 고부가가치식품기술개발사업을 통해 수행되었으며, 국제학술지인 ‘환경독성학회지(Environmental Toxicology)’에 6월호 표지논문으로 게재되었다. <그림설명> <그림 1> 항암제가 예쁜꼬마선충의 성장과 생식에 미치는 영향 항암제를 먹이지 않은 벌레(왼쪽, 대조군)에 비하여, 항암제를 먹인 벌레 (오른쪽) 성장이 느려지고, 알을 훨씬 적게 낳는 것을 확인할 수 있다.
예쁜꼬마선충이 항암제 독성 여부를 알려준다
예쁜꼬마선충이 항암제 독성 여부를 알려준다 - 포유동물의 희생을 줄이면서 신규 항암제의 독성 평가 가능 - 향후 바이오제품 및 환경유해물질의 독성평가에 활용될 것으로 기대 2002년 노벨 생리의학상을 수상한 시드니 브레너는 ‘예쁜꼬마선충’을 생물학 실험실에 도입하여 현대 유전학, 발생학, 특히 신경생물학에서 생명현상에 대한 엄청난 지적 성과를 끌어냈다. 예쁜꼬마선충(Caenorhabditis elegans)은 흙에 서식하는 1 밀리미터 정도 크기의 투명한 벌레로 900여개의 체세포와 300여개의 신경세포, 2만 여개의 유전자로 구성되어 있다. 꼬마선충의 유전자 중 40%가 인간에게 보존되어 있는 것으로 밝혀져 세포 사멸, 노화 등의 생물학적 기작이 인간에게도 적용될 수 있다고 알려졌다. 한국과학기술연구원(KIST, 원장 이병권) 강릉분원 천연물연구소(분원장 오상록) 시스템천연물연구센터 강경수 박사팀(제1저자 KIST 이소영 석사과정)은 이러한 예쁜꼬마선충을 이용하여 항암제의 독성을 평가하는 기술개발에 성공하였다. 식의약품, 화장품 등을 개발하는 바이오산업에서는 제품의 안전성을 담보하기 위하여 독성평가 과정을 거치게 된다. 이러한 평가과정에서는 쥐, 토끼, 개와 같은 포유동물들의 희생이 따르기 때문에, 동물실험윤리 이슈와 경제성 측면의 문제가 발생하게 된다. 뿐만 아니라 미세먼지, 환경호르몬, 중금속, 잔류농약, 합성화학제품, 녹조독소 등 환경유해물질의 위험성이 대두됨에 따라, 이러한 환경유해물질의 위험성을 가늠하기 위한 독성평가가 증가하게 되고, 동물실험이 보다 많이 수행될 수밖에 없는 실정이었다. 연구진은 이러한 배경에서 포유동물을 대신하여 항암제의 독성을 평가하기 위한 실험동물로 예쁜꼬마선충을 선택하였다. 즉, 실험용 쥐 대신 예쁜꼬마선충에게 항암제를 먹인 후, 행동이나 성장에는 문제가 없는지 혹은 이 벌레가 낳는 알의 개수에는 변화가 없는지를 관찰함으로써 항암제의 독성이 동물의 건강에 미치는 영향을 평가하였다. 하나의 새로운 항암제 개발을 위한 효능과 독성 평가 과정과 비교해보면, 기존의 독성 평가 수행 시 한 달 이상의 연구기간동안 실험용 쥐 100여 마리 정도를 희생시켜야하는 반면, 예쁜꼬마선충을 이용한 독성평가의 경우 포유동물을 이용한 실험 없이 일주일이면 평가 결과를 얻을 수 있었다. 기존방법인 쥐를 이용한 독성평가는 쥐의 체중변화, 조직병리분석 및 혈액검사를 바탕으로 이루어지는 반면, 벌레를 이용한 실험은 벌레의 크기변화, 알의 개수, 알의 부화속도, 생식세포 형태관찰 등을 통해 항암제의 독성을 가늠할 수 있었다. KIST 강경수 박사는 “예쁜꼬마선충은 비록 벌레이긴 하지만, 사람과 유사한 소화기관, 신경기관, 유전자를 가지고 있어서, 향후에는 항암제의 독성평가뿐만 아니라 여러 가지 식의약품의 효능발굴이나 약물의 작동원리를 밝히는 데에도 요긴하게 쓰일 수 있다.”고 설명하였다. 연구진은 현재 ‘예쁜꼬마선충 평가법’을 이용하여 항암제 후보물질과 여러 가지 환경유해물질 등 보다 다양한 케미컬을 대상으로 독성평가 시험을 진행하고 있다. 뿐만 아니라 향후 연구진은 천연물로부터 장건강을 좋게 하는 건강기능식품 개발과 같은 새로운 식의약품, 화장품 개발과정에서도 효능과 부작용을 검증하기 위해 이 벌레를 활용할 계획이다. 이를 통해, 포유동물의 희생을 최소화함으로써 동물연구윤리를 지켜나가고, 꼭 필요한 부분에 포유동물 실험을 집중함으로써 연구의 효율성을 보다 높일 수 있을 것으로 기대하고 있다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업과 농림축산식품부의 고부가가치식품기술개발사업을 통해 수행되었으며, 국제학술지인 ‘환경독성학회지(Environmental Toxicology)’에 6월호 표지논문으로 게재되었다. <그림설명> <그림 1> 항암제가 예쁜꼬마선충의 성장과 생식에 미치는 영향 항암제를 먹이지 않은 벌레(왼쪽, 대조군)에 비하여, 항암제를 먹인 벌레 (오른쪽) 성장이 느려지고, 알을 훨씬 적게 낳는 것을 확인할 수 있다.
예쁜꼬마선충이 항암제 독성 여부를 알려준다
예쁜꼬마선충이 항암제 독성 여부를 알려준다 - 포유동물의 희생을 줄이면서 신규 항암제의 독성 평가 가능 - 향후 바이오제품 및 환경유해물질의 독성평가에 활용될 것으로 기대 2002년 노벨 생리의학상을 수상한 시드니 브레너는 ‘예쁜꼬마선충’을 생물학 실험실에 도입하여 현대 유전학, 발생학, 특히 신경생물학에서 생명현상에 대한 엄청난 지적 성과를 끌어냈다. 예쁜꼬마선충(Caenorhabditis elegans)은 흙에 서식하는 1 밀리미터 정도 크기의 투명한 벌레로 900여개의 체세포와 300여개의 신경세포, 2만 여개의 유전자로 구성되어 있다. 꼬마선충의 유전자 중 40%가 인간에게 보존되어 있는 것으로 밝혀져 세포 사멸, 노화 등의 생물학적 기작이 인간에게도 적용될 수 있다고 알려졌다. 한국과학기술연구원(KIST, 원장 이병권) 강릉분원 천연물연구소(분원장 오상록) 시스템천연물연구센터 강경수 박사팀(제1저자 KIST 이소영 석사과정)은 이러한 예쁜꼬마선충을 이용하여 항암제의 독성을 평가하는 기술개발에 성공하였다. 식의약품, 화장품 등을 개발하는 바이오산업에서는 제품의 안전성을 담보하기 위하여 독성평가 과정을 거치게 된다. 이러한 평가과정에서는 쥐, 토끼, 개와 같은 포유동물들의 희생이 따르기 때문에, 동물실험윤리 이슈와 경제성 측면의 문제가 발생하게 된다. 뿐만 아니라 미세먼지, 환경호르몬, 중금속, 잔류농약, 합성화학제품, 녹조독소 등 환경유해물질의 위험성이 대두됨에 따라, 이러한 환경유해물질의 위험성을 가늠하기 위한 독성평가가 증가하게 되고, 동물실험이 보다 많이 수행될 수밖에 없는 실정이었다. 연구진은 이러한 배경에서 포유동물을 대신하여 항암제의 독성을 평가하기 위한 실험동물로 예쁜꼬마선충을 선택하였다. 즉, 실험용 쥐 대신 예쁜꼬마선충에게 항암제를 먹인 후, 행동이나 성장에는 문제가 없는지 혹은 이 벌레가 낳는 알의 개수에는 변화가 없는지를 관찰함으로써 항암제의 독성이 동물의 건강에 미치는 영향을 평가하였다. 하나의 새로운 항암제 개발을 위한 효능과 독성 평가 과정과 비교해보면, 기존의 독성 평가 수행 시 한 달 이상의 연구기간동안 실험용 쥐 100여 마리 정도를 희생시켜야하는 반면, 예쁜꼬마선충을 이용한 독성평가의 경우 포유동물을 이용한 실험 없이 일주일이면 평가 결과를 얻을 수 있었다. 기존방법인 쥐를 이용한 독성평가는 쥐의 체중변화, 조직병리분석 및 혈액검사를 바탕으로 이루어지는 반면, 벌레를 이용한 실험은 벌레의 크기변화, 알의 개수, 알의 부화속도, 생식세포 형태관찰 등을 통해 항암제의 독성을 가늠할 수 있었다. KIST 강경수 박사는 “예쁜꼬마선충은 비록 벌레이긴 하지만, 사람과 유사한 소화기관, 신경기관, 유전자를 가지고 있어서, 향후에는 항암제의 독성평가뿐만 아니라 여러 가지 식의약품의 효능발굴이나 약물의 작동원리를 밝히는 데에도 요긴하게 쓰일 수 있다.”고 설명하였다. 연구진은 현재 ‘예쁜꼬마선충 평가법’을 이용하여 항암제 후보물질과 여러 가지 환경유해물질 등 보다 다양한 케미컬을 대상으로 독성평가 시험을 진행하고 있다. 뿐만 아니라 향후 연구진은 천연물로부터 장건강을 좋게 하는 건강기능식품 개발과 같은 새로운 식의약품, 화장품 개발과정에서도 효능과 부작용을 검증하기 위해 이 벌레를 활용할 계획이다. 이를 통해, 포유동물의 희생을 최소화함으로써 동물연구윤리를 지켜나가고, 꼭 필요한 부분에 포유동물 실험을 집중함으로써 연구의 효율성을 보다 높일 수 있을 것으로 기대하고 있다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업과 농림축산식품부의 고부가가치식품기술개발사업을 통해 수행되었으며, 국제학술지인 ‘환경독성학회지(Environmental Toxicology)’에 6월호 표지논문으로 게재되었다. <그림설명> <그림 1> 항암제가 예쁜꼬마선충의 성장과 생식에 미치는 영향 항암제를 먹이지 않은 벌레(왼쪽, 대조군)에 비하여, 항암제를 먹인 벌레 (오른쪽) 성장이 느려지고, 알을 훨씬 적게 낳는 것을 확인할 수 있다.